Показания датчиков при диагностики двигателя: 403 — Доступ запрещён – Норма показания датчиков при диагностики двигателя. Типовые параметры работы инжекторных двигателей ВАЗ

Норма показания датчиков при диагностики двигателя. Типовые параметры работы инжекторных двигателей ВАЗ

Зарегистрируйтесь сейчас чтобы найти еще больше друзей, и получить полноценный доступ ко всем функциям сайта!

Для просмотра Вам необходимо авторизироваться .
Если Вы еще не зарегистрированы, перейдите по ссылке: Регистрация .

x

Для многих начинающих диагностов и простых автолюбителей, которым интересна тема диагностики будет полезна информация о типичных параметрах двигателей. Поскольку наиболее распространенные и простые в ремонте двигатели автомобилей ВАЗ, то и начнем именно с них. На что в первую очередь надо обратить внимание при анализе параметров работы двигателя?
1. Двигатель остановлен.
1.1 Датчики температуры охлаждающей жидкости и воздуха (если есть). Проверяется температура на предмет соответствия показаний реальной температуре двигателя и воздуха. Проверку лучше производить с помощью бесконтактного термометра. К слову сказать, одни из самых надежных в системе впрыска двигателей ВАЗ – это датчики температуры.

1.2 Положение дроссельной заслонки (кроме систем с электронной педалью газа). Педаль газа отпущена – 0%, акселератор нажали – соответственно открытию дроссельной заслонки. Поиграли педалью газа, отпустили – должно также остаться 0%, ацп при этом с дпдз около 0,5В. Если угол открытия прыгает с 0 до 1-2%, то как правило это признак изношенного дпдз. Реже встречается неисправности в проводке датчика. При полностью нажатой педали газа некоторые блоки покажут 100% открытия (такие как январь 5.1 , январь 7.2), а другие как например Bosch MP 7.0 покажут только 75%. Это нормально.

1.3 Канал АЦП ДМРВ в режиме покоя: 0.996/1.016 В — нормально, до 1.035 В еще приемлемо, все что выше уже повод задуматься о замене датчика массового расхода воздуха. Системы впрыска, оснащенные обратной связью по датчику кислорода способны скорректировать до некоторой степени неверные показания ДМРВ, но всему есть предел, поэтому не стоит тянуть с заменой этого датчика, если он уже изношен.

2. Двигатель работает на холостом ходу.

2.1 Обороты холостого хода. Обычно это – 800 – 850 об/мин при полностью прогретом двигателе. Значение количества оборотов на холостом ходу зависят от температуры двигателя и задаются в программе управления двигателем.

2.2 Массовый расход воздуха. Для 8ми клапанных двигателей типичное значение составляет 8-10 кг/ч, для 16ти клапанных – 7 – 9,5 кг/час при полностью прогретом двигателе на холостом ходу. Для ЭБУ М73 эти значения несколько больше в связи с конструктивной особенностью.

2.3 Длительность времени впрыска. Для фазированного впрыска типичное значение составляет 3,3 – 4,1 мсек. Для одновременного – 2,1 – 2,4 мсек. Собственно не так важно само время впрыска, как его коррекция.

2.4 Коэффициент коррекции времени впрыска. Зависит от множества факторов. Это тема для отдельной статьи, здесь только стоит упомянуть, что чем ближе к 1,000 тем лучше. Больше 1,000 – значит смесь дополнительно обогащается, меньше 1,000 значит обедняется.

2.5 Мультипликативная и аддитивная составляющая коррекции самообучением. Типичное значение мультипликатива 1 +/-0,2. Аддитив измеряется в процентах и должен быть на исправной системе не более +/- 5%.

2.6 При наличии признака работы двигателя в зоне регулировки по сигналу датчика кислорода последний должен рисовать красивую синусоиду от 0,1 до 0,8 В.

2.7 Цикловое наполнение и фактор нагрузки. Для «январей» типичный цикловой расход воздуха: 8ми клапанный двигатель 90 – 100 мг/такт, 16ти клапанный 75 -90 мг/такт. Для блоков управления Bosch 7.9.7 типичный фактор нагрузки 18 – 24 %.

Перечень переменных, системы управления двигателем ВАЗ-2112 (1,5л 16 кл.) контроллер M1.5.4N «Bosch »

Параметр Наименование Единица или состояние
Зажигание включено
Холостой ход
1 ВЫКЛ.ДВИГАТ Признак выключения двигателя Да/Нет Да Нет
2 ХОЛОСТОЙ ХОД Признак работы двигателя в режиме холостого хода Да/Нет Нет Да
3 ОБОГ. ПО МОЩ Признак мощностного обогащения Да/Нет Нет Нет
4 БЛОК.ТОПЛИВА Признак блокировки гопливоподачи Да/Нет
Нет
Нет
5 ЗОНА РЕГ. О 2 Признак работы в зоне регулировки по датчику кислорода Да/Нет Нет Да/Нет
6 ЗОНА ДЕТОН Признак работы двигателя в зоне детонации Да/Нет Нет Нет
7 ПРОДУВКА АДС Признак работы клапана продувки адсорбера Да/Нет Нет Да/Нет
8 ОБУЧЕНИЕ О 2

Параметры диагностики двигателя. Описание, фото и видео

Приветствую, Друзья! Периодически приходится отвечать на одинаковые вопросы, связанные с диагностикой автомобиля. А именно — какие основные параметры диагностики? Какие параметры датчиков при диагностике? Какие типовые параметры? И тому подобное.

Поэтому решил написать этот пост, чтобы давать ссылку на него при таких вопросах.

Параметры диагностики

Про параметры диагностики я снимал уже видео довольно давно. Там я подробно затронул многие параметры диагностики. А также приводил реальные примеры проблемных параметров. Вот это видео

А также в текстовом виде описывал всё это дело на этой странице.

В данных примерах параметры диагностики показаны на примере автомобилей Шевроле Лачетти с двигателями 1.4/1.6 и аналогичных.

Но все эти параметры, кроме «Положения ДЗ» подходят и к другим автомобилям с системой управления двигателем, построенной на датчике абсолютного давления.

Основные параметры диагностики

Какие параметры при диагностике важны? Ответ прост — ВСЕ параметры важны!

Нет, ну конечно, есть основные параметры, на которые стоит обратить внимание в первую очередь:

Барометрическое давление — оно должно быть равно атмосферному давлению в Вашем регионе в данный период времени. Обычно это 98-100 кПа.

Давление во впускном коллекторе — на холостом ходу прогретого двигателя без нагрузки (выкл. потребители и кондиционер) оно должно составлять 30-33 кПа. Если оно завышено, то это сразу не означает, что это подсос воздуха, как многие думают. Почему? Читайте об этом на странице Высокое давление во впускном коллекторе

Накопленная коррекция топливоподачи — должна быть максимально близкой к нулю. В идеале равна нулю. Если это не так, то необходимо искать причину. Вот самая частая причина отрицательной коррекции

Долгосрочная коррекция топлива в минусе

Сигнал первого датчика кислорода — в идеале должен иметь пилообразную форму на холостом ходу. При помощи него можно многое узнать о подаче топлива и о запорных свойствах форсунок. Более подробно о нем на странице Лямбда зонд

Как работает лямбда зонд

Сигнал второго датчика кислорода — его сигнал должен иметь практически ровную линию. Если он повторяет сигнал первого датчика кислорода, то это означает, что катализатор работает с низким КПД, либо вовсе отсутствует.

Проверка катализатора по сигналу лямбда зонда

Положение РХХ (Шаги) — должны обычно составлять 25 — 35 шагов. Если они завышены, значит пора почистить регулятор холостого хода, либо заменить его. Если шаги сильно занижены, значит скорее всего имеется подсос воздуха во впускной коллектор.

Длительность импульса впрыска — должна составлять 2.3 — 3 мсек. на холостом ходу прогретого двигателя без нагрузки (выключены потребители и кондиционер).

Положение ДЗ — на разных авто этот параметр имеет различные значения. Даже у Лачетти этот параметр различается на хх:

  • на 1.4/1.6 — 2.5-3%
  • на 1.8 — 0%
  • на 1.8 LDA — 11-13%

Температура охлаждающей жидкости — на незапущенном двигателе должна быть близка к температуре окружающей среды и при прогреве повышаться плавно. Если на улице минус 10 градусов, а датчик показывает плюс двадцать, тогда однозначно он требует замены либо проверки его проводки.

Температура воздуха на впуске — аналогично датчику температуры ОЖ.

УОЗ — на разных системах он будет разным. Допустим, на Лачетти 1.4/1.6 — это 3-12 градусов на хх. В зависимости от переключателя октанового числа и применяемого топлива. А на лачетти 1.8 — это около нуля градусов на хх. Главное, чтобы УОЗ был максимально стабильным и не имел резких скачков на холостом ходу.

Вот эти параметры очень важны и на них стоит обращать внимание в первую очередь. НО!

Допустим, занижено напряжение ДПДЗ или завышено напряжение датчика клапана ЕГР, или нет сигнала от выключателя холостого хода, то все эти вышеперечисленные важные параметры не дают полной картины о происходящем в системе управления двигателем.

Поэтому что? Правильно! Все параметры важны!

Параметры диагностики автомобиля

И на последок самое главное. Что мы подразумеваем под параметрами диагностики автомобиля?

Многие не до конца понимают суть диагностики сканером или адаптером. А сути здесь две и они очень важны:

  1. Данный вид диагностики позволяет определить уже явные проблемы. Тонкую диагностику таким способом не выполнишь. Для этого необходимы другие устройства и инструменты — мотор-тестеры, пневмотестеры, компрессометры, манометры и т.п.
  2. И самое главное — когда мы подключаемся к колодке диагностики, то мы подключаемся к блоку управления двигателем! Поэтому мы не видим реальной картины! Мы лишь видим то, что видит блок управления! Если длительность импульса впрыска в параметрах диагностики показана 2.5 мсек, то это не означает, что это так и есть на самом деле. Это лишь ЭБУ задал такое время впрыска. А как на самом деле отработала форсунка, мы не видим. И это очень важно понимать.

Поэтому данные параметры диагностики являются лишь начальным этапом при диагностике автомобиля и далеко не всегда они могут нам помочь.

Это не панацея, а лишь первый и довольно грубоватый анализ ситуации. Порой простой осмотр свечей зажигания может сказать больше, чем все эти параметры.

Но, в то же время, такая диагностика может оказаться незаменимой и очень полезной в разных ситуациях. Например, при покупке автомобиля можно узнать много нехорошего, как в этом видео на нашем канале

На этом все. Пусть Ваши машинки не болеют.

Всем Мира и ровных дорог!

параметры впрыска ВАЗ-2110. Допрос с пристрастием — журнал За рулем

ДИАГНОСТИКА: параметры впрыска ВАЗ-2110. Допрос с пристрастием

При всей привлекательности автомобильных технологий середины ХХ века отказ от них закономерен. Обязательными для России стали, наконец, требования Евро II, за ними неизбежно последуют Евро III, потом Евро IV. В сущности, каждому сознательному автомобилисту предстоит радикально изменить собственное мировоззрение, сделав его основой не «гоночные» амбиции, культивировавшиеся целое столетие, а бережное отношение к цивилизации. Количество и состав выбросов автомобильного двигателя теперь ограничивают чрезвычайно жесткими рамками — хотя бы и при некоторой потере динамических показателей.

Добиться выполнения таких требований сумеем, только подняв уровень сервиса. Конечно, автолюбителям, не утратившим любознательности, «лишние» знания тоже не повредят. Хотя бы в прикладном смысле: грамотный человек меньше рискует быть обманутым недобросовестными мастерами, а это всегда актуально.

Итак, к делу. Сегодня автомобили ВАЗ выпускаются с контроллером Bosch M7.9.7. В сочетании с дополнительным датчиком кислорода в выхлопных газах и датчиком неровной дороги это обеспечивает выполнение норм Евро III и Евро IV. Конечно, теперь увеличилось количество контролируемых параметров. Вот о них и расскажем, предполагая, что мы, вы или диагност из сервиса вооружены сканером — например, ДСТ-10 (ДСТ-2).

Начнем с датчиков температуры: их два. Первый — на отводящем патрубке системы охлаждения (фото 1). По его показаниям контроллер оценивает температуру жидкости перед пуском двигателя — TMST (°С), ее значения при прогреве — ТМОТ (°С). Второй датчик измеряет температуру воздуха, поступающего в цилиндры, — TANS (°С). Он установлен в корпусе датчика массового расхода воздуха. (Здесь и далее выделенные сокращения те же, что в официальных руководствах по ремонту.)

Надо ли долго объяснять роль этих датчиков? Представьте, что контроллер обманут заниженными показаниями ТМОТ, а двигатель на самом деле уже прогрет. Начнутся проблемы! Контроллер будет увеличивать время открытия форсунок, пытаясь обогатить смесь — результат тут же обнаружит датчик кислорода и «настучит» контроллеру об ошибке. Контроллер попытается ее исправить, но тут снова вмешивается неверная температура…

Величина TMST перед запуском, помимо прочего, важна для оценки работы термостата по времени прогрева двигателя. К слову сказать, если автомобилем долго не пользовались, то есть температура двигателя сравнялась с температурой воздуха (с учетом условий хранения!), очень полезно сопоставить показания обоих датчиков перед пуском. Они должны быть одинаковы (допуск ±2°С).

А что будет, если отключить оба датчика? После пуска величину ТМОТ контроллер рассчитывает согласно алгоритму, заложенному в программу. А величину TANS принимает равной 33°С для 8-клапанного двигателя 1,6 л и 20°С для 16-клапанного. Очевидно, что исправность этого датчика очень важна при холодном пуске, особенно в мороз.

Следующий важный параметр — напряжение в бортовой сети UB. В зависимости от типа генератора оно может лежать в пределах 13,0- 15,8 В. Контроллер получает питание +12 В тремя путями: от АКБ, замка зажигания и главного реле. С последнего он вычисляет напряжение в системе управления и при необходимости (в случае понижения напряжения в сети) увеличивает время накопления энергии в катушках зажигания и длительность импульсов впрыска топлива.

Значение текущей скорости автомобиля выводится на дисплей сканера в виде VFZG. Оценивает ее датчик скорости (на коробке передач — фото 2) по частоте вращения корпуса дифференциала (погрешность не более ±2%) и сообщает контроллеру. Конечно, эта скорость должна практически совпасть с той, что показывает спидометр — ведь тросовый его привод остался в прошлом.

Если минимальные обороты холостого хода у прогретого двигателя выше нормы, проверим степень открытия дроссельной заслонки WDKBA, выраженную в процентах. В закрытом положении (фото 3) — ноль, у полностью открытой — от 70 до 86%. Нужно иметь в виду, что это относительная величина, связанная с датчиком положения заслонки, а не угол в градусах! (На устаревших моделях полному открытию дросселя соответствовали 100%.) На практике, если показатель WDKBA не ниже 70%, регулировать механику привода, что-то отгибать и т.п. нет необходимости.

При закрытом дросселе контроллер запоминает величину напряжения, поступающего с ДПДЗ (0,3–0,7 В), и хранит в энергозависимой памяти. Это полезно знать, если вы самостоятельно меняете датчик. В этом случае надо снять клемму с АКБ. (В сервисе для инициализации пользуются диагностическим прибором.) В противном случае измененный сигнал с нового ДПДЗ может обмануть контроллер — и обороты холостого хода не будут соответствовать норме.

Вообще же частоту вращения коленвала контроллер определяет с некоторой дискретностью. До 2500 об/мин точность измерений — 10 об/мин — NMOTLL, а весь диапазон — от минимума до срабатывания ограничителя — оценивает параметр NMOT с дискретностью 40 об/мин. Для оценки состояния двигателя более высокая точность в этом диапазоне не требуется.

Практически все параметры двигателя так или иначе связаны с расходом воздуха в его цилиндрах, контролируемым с помощью датчика массового расхода воздуха (ДМРВ — фото 4). Этот показатель, выраженный в килограммах в час (кг/ч), обозначается как ML. Пример: новый необкатанный 8-клапанный двигатель 1,6 л в прогретом состоянии на режиме холостого хода расходует 9,5- 13 кг воздуха в час. По мере приработки с уменьшением потерь на трение этот показатель существенно снижается — на 1,3- 2 кг/ч. Пропорционально меньше и расход бензина. Конечно, сопротивление вращению водяного и масляного насосов и генератора тоже сказывается, при эксплуатации несколько влияя на расход воздуха. В то же время контроллер рассчитывает и

Motorhelp.ru диагностика и ремонт двигателя

Типовые параметры работы инжекторных двигателей ВАЗ.Для многих начинающих диагностов и простых автолюбителей, которым интересна тема диагностики будет полезна информация о типичных параметрах двигателей. Поскольку наиболее распространенные и простые в ремонте двигатели автомобилей ВАЗ, то и начнем именно с них. На что в первую очередь надо обратить внимание при анализе параметров работы двигателя?
1. Двигатель остановлен.
1.1 Датчики температуры охлаждающей жидкости и воздуха (если есть). Проверяется температура на предмет соответствия показаний реальной температуре двигателя и воздуха. Проверку лучше производить с помощью бесконтактного термометра. К слову сказать, одни из самых надежных в системе впрыска двигателей ВАЗ – это датчики температуры.

1.2 Положение дроссельной заслонки (кроме систем с электронной педалью газа). Педаль газа отпущена – 0%, акселератор нажали – соответственно открытию дроссельной заслонки. Поиграли педалью газа, отпустили – должно также остаться 0%, ацп при этом с дпдз около 0,5В. Если угол открытия прыгает с 0 до 1-2%, то как правило это признак изношенного дпдз. Реже встречается неисправности в проводке датчика. При полностью нажатой педали газа некоторые блоки покажут 100% открытия (такие как январь 5.1 , январь 7.2), а другие как например Bosch MP 7.0 покажут только 75%. Это нормально.

1.3 Канал АЦП ДМРВ в режиме покоя: 0.996/1.016 В — нормально, до 1.035 В еще приемлемо, все что выше уже повод задуматься о замене датчика массового расхода воздуха. Системы впрыска, оснащенные обратной связью по датчику кислорода способны скорректировать до некоторой степени неверные показания ДМРВ, но всему есть предел, поэтому не стоит тянуть с заменой этого датчика, если он уже изношен.

2. Двигатель работает на холостом ходу.

2.1 Обороты холостого хода. Обычно это – 800 – 850 об/мин при полностью прогретом двигателе. Значение количества оборотов на холостом ходу зависят от температуры двигателя и задаются в программе управления двигателем.

2.2 Массовый расход воздуха. Для 8ми клапанных двигателей типичное значение составляет 8-10 кг/ч, для 16ти клапанных – 7 – 9,5 кг/час при полностью прогретом двигателе на холостом ходу. Для ЭБУ М73 эти значения несколько больше в связи с конструктивной особенностью.

2.3 Длительность времени впрыска. Для фазированного впрыска типичное значение составляет 3,3 – 4,1 мсек. Для одновременного – 2,1 – 2,4 мсек. Собственно не так важно само время впрыска, как его коррекция.

2.4 Коэффициент коррекции времени впрыска. Зависит от множества факторов. Это тема для отдельной статьи, здесь только стоит упомянуть, что чем ближе к 1,000 тем лучше. Больше 1,000 – значит смесь дополнительно обогащается, меньше 1,000 значит обедняется.

2.5 Мультипликативная и аддитивная составляющая коррекции самообучением. Типичное значение мультипликатива 1 +/-0,2. Аддитив измеряется в процентах и должен быть на исправной системе не более +/- 5%.

2.6 При наличии признака работы двигателя в зоне регулировки по сигналу датчика кислорода последний должен рисовать красивую синусоиду от 0,1 до 0,8 В.

2.7 Цикловое наполнение и фактор нагрузки. Для «январей» типичный цикловой расход воздуха: 8ми клапанный двигатель 90 – 100 мг/такт, 16ти клапанный 75 -90 мг/такт. Для блоков управления Bosch 7.9.7 типичный фактор нагрузки 18 – 24 %.

Теперь рассмотрим подробнее, как на практике ведут себя эти параметры. Поскольку для диагностики я пользуюсь программой SMS Diagnostics (Алексею Михеенкову и Сергею Сапелину привет!) , то все скриншоты будут оттуда. Параметры сняты с практически исправных автомобилей, за исключением отдельно оговоренных случаев.
Все изображения кликабельны.

Ваз 2110 8ми клапанный двигатель, блок управления Январь 5.1
Здесь немного подправлен коэффициент коррекции СО в связи с небольшим износом ДМРВ.
Типовые параметры работы инжекторных двигателей ВАЗ.

Ваз 2107, блок управления Январь 5.1.3
Типовые параметры работы инжекторных двигателей ВАЗ.

Ваз 2115 8ми клапанный двигатель, блок управления Январь 7.2
Типовые параметры работы инжекторных двигателей ВАЗ.

Двигатель Ваз 21124, блок управления Январь 7.2
Типовые параметры работы инжекторных двигателей ВАЗ.

Ваз 2114 8ми клапанный двигатель, блок управления Bosch 7.9.7
Типовые параметры работы инжекторных двигателей ВАЗ.

Приора, двигатель Ваз 21126 1,6 л., блок управления Bosch 7.9.7
Типовые параметры работы инжекторных двигателей ВАЗ.

Жигули Ваз 2107, блок управления М73
Типовые параметры работы инжекторных двигателей ВАЗ.

Двигатель Ваз 21124, блок управления М73
Типовые параметры работы инжекторных двигателей ВАЗ.

Ваз 2114 8ми клапанный двигатель, блок управления М73
Типовые параметры работы инжекторных двигателей ВАЗ.

Калина, 8ми клапанный двигатель, блок управления М74
Типовые параметры работы инжекторных двигателей ВАЗ.

Нива двигатель ВАЗ-21214, блок управления Bosch ME17.9.7
Типовые параметры работы инжекторных двигателей ВАЗ.

И в заключении напомню, что приведенные выше скриншоты сняты с реальных автомобилей, но к сожалению зафиксированные параметры не являются идеальными. Хотя я и старался фиксировать параметры только с исправных автомобилей.скачать dle 10.6фильмы бесплатно

Диагностика двигателя с помощью сканера

В помощь автовладельцам в продаже появилось множество различных сканеров для проведения самостоятельной диагностики современных двигателей. Но без знания основ работы системы впрыска вряд ли такой прибор окажет существенную помощь.

Перед пуском и в процессе работы двигателя контроллер оценивает температуру охлаждающей жидкости и температуру воздуха на впуске. Если датчик температуры ОЖ дает неверные показания, блок управления будет излишне обогащать или, наоборот, обеднять смесь, что приведет к неустойчивой работе двигателя и трудностям при запуске. Значение температуры ОЖ перед пуском используется для оценки работы термостата по времени прогрева двигателя. Исправность датчиков можно оценить перед холодным пуском, когда температура ОЖ сравнялась с температурой наружного воздуха. Показания датчиков в этом случае также должны отличаться не более, чем на 1-2 градуса. Если оба датчика отключить, контроллер будет брать значения, заложенные в «аварийную» программу. При неисправности датчика температуры воздуха возникнут трудности при запуске мотора, особенно при низких температурах.

Величина напряжения в бортовой сети также находится под неусыпным контролем блока управления. Ее значение зависит от параметров генератора. Если напряжение ниже нормы, контроллер увеличивает продолжительность накопления энергии в катушках зажигания и время впрыска.

С помощью сканера можно снять показания с датчика скорости и сравнить их с показаниями спидометра, оценив, таким образом, его работоспособность.

При повышенных оборотах холостого хода прогретого двигателя сканером проверяется степень открытия дроссельной заслонки. Она измеряется в процентах, и изменяется от 0% в закрытом состоянии до, не менее чем 70%, в полностью открытом.

В энергозависимой памяти контроллера хранятся данные о величине напряжения на датчике положения дроссельной заслонки (ДПДЗ) в закрытом состоянии. При установке другого датчика напряжение может быть другим, и поэтому контроллер по-другому отрегулирует обороты холостого хода. Чтобы такой ошибки не происходило, перед заменой датчика необходимо снимать клемму с аккумулятора.

Показания датчика массового расхода воздуха (ДМРВ), выраженные в кг/ч, используются контроллером для расчета большинства параметров. Одновременно контроллер вычисляет и теоретическую величину количества воздуха в зависимости от нагрузки. Эти два показания на исправном двигателе не должны сильно отличаться. Слишком большая разница между данными ДМРВ и расчетным значением количества необходимого воздуха свидетельствует о неисправности двигателя.

Контроллер рассчитывает и при необходимости корректирует угол опережения зажигания (УОЗ). С помощью сканера можно проверить его величину. При возникновении детонации блок управления «подправит» УОЗ, что наглядно будет видно на экране сканера.

Нагрузку на двигатель контроллер оценивает по величине и скорости открытия дроссельной заслонки. Измеряется она в процентах. Для прогретого мотора, работающего на холостых оборотах, параметр «нагрузка на двигатель» величина постоянная. Поэтому весьма полезно запомнить это значение. Если оно резко уменьшилось, это говорит о наличии постороннего подсоса воздуха. При увеличении же значения этого параметра от стандартного причину следует, прежде всего, искать в ДМРВ. Также этот параметр может увеличиться при увеличившемся сопротивлении вращению ротора генератора или насоса охлаждающей жидкости. Современные системы управления двигателем при расчете нагрузки учитывают даже такой параметр, как высота над уровнем моря, уменьшая время открытия форсунок с повышением высоты.

Проверяя сканером время открытого состояния форсунок, помните, что в современных системах фазированного впрыска форсунка открывается один раз за два оборота коленвала. В устаревших же, где форсунки срабатывают одновременно или попарно – параллельно, впрыск производится дважды. При этом управляющий импульс по длительности вдвое короче.

В режиме торможения двигателем подача топлива либо прекращается, либо снижается до минимума. Проверить, отключена ли топливоподача, можно с помощью специального параметра, который имеет только два значения: «да» или «нет».

Важной деталью системы управления является регулятор холостого хода (РХХ). Но он задействован не только в режиме холостого хода, но и в других рабочих режимах. РХХ чутко реагирует на любые изменения нагрузки, допустим – при включении осветительных приборов. При проверке сканером задают величину перемещения штока РХХ, следя при этом за изменением частоты вращения мотора.

По уровню сигнала от датчика детонации можно оценить шумность работы двигателя. Он измеряется в вольтах. В исправном двигателе его значение находится в пределах от 0,3 до 1 вольта. В изношенном двигателе эта величина будет выше.

Одной из «экологических» систем современного автомобиля является система улавливания паров бензина. Ее исполнительный механизм – электромагнитный клапан, управляемый контроллером. Клапан располагается в подкапотном пространстве, и при его работе слышны щелчки. При проверке сканером изменяют время открытия клапана и одновременно отслеживают работу РХХ. Если он прикроется, то, следовательно, во впускной тракт поступила дополнительная порция продувочного воздуха через клапан.

Установки системы управления хранятся в энергонезависимой памяти в виде контрольной суммы (набор букв и цифр), и подкорректировать их с помощью сканера невозможно. Для этого требуется специальное программное обеспечение. Контрольная сумма может измениться при сбое в программе работы контроллера. При этом контроллер придется заменить, в лучшем случае – перепрограммировать. Время работы контроллера также фиксируется в памяти, но при снятии клеммы аккумулятора этот параметр обнуляется.

Используя данные о количестве поступающего в двигатель воздуха от датчика массового расхода воздуха (ДМРВ), контроллер рассчитывает необходимое количество топлива и время открытого состояния форсунок. Правильность расчетов проверяется с помощью датчика кислорода (лямбда – зонда), устанавливаемого в выпускной системе перед каталитическим нейтрализатором. Этот процесс коррекции состава смеси по показаниям датчика кислорода (ДК) называется лямбда – регулированием (или обратной связью).

Сразу после пуска, когда лямбда-зонд не прогрет до рабочей температуры (300°C), он не участвует в процессе регулирования состава рабочей смеси, а сигнал на его выходе постоянен и равен приблизительно 0,5 вольта. Уменьшить время прогрева позволяет дополнительный электрический подогрев датчика. Как только сигнал датчика изменит значение, контроллер тут же «заметит» это и включит лямбда-зонд в процесс корректирования состава смеси.

В процессе работы сигнал ДК постоянно изменяется в пределах 0,1 – 0,9 В. Высокий уровень напряжения соответствует богатой смеси, низкий – бедной. Это наглядно видно на экране сканера. Если же экран недостаточно велик, можно подключить сканер к монитору компьютера – сигнал датчика напоминает синусоиду с прямоугольными краями.

Сигнал ДК контроллер «преобразует» в коэффициент коррекции длительности впрыска (КД). В нормальном состоянии этот параметр колеблется в пределах от 0,98 до 1,02. Максимально допустимые пределы от 0,85 до 1,15. Меньшие значения соответствуют более богатой смеси, большие – бедной. Если коэффициент меньше единицы, контроллер уменьшает время впрыска, если больше – увеличивает. Значения, выходящие из указанного диапазона, свидетельствуют о неисправностях в работе двигателя.

Но одного лямбда – регулирования для обеспечения нужного состава смеси недостаточно. В современных двигателях конструкторы научили блок управления учитывать изменения параметров – «старение» датчиков, постепенное снижение компрессии в цилиндрах, разницу в качестве заправленного топлива и другие факторы. Таким образом, контроллеры получили функцию самообучения. Для ее реализации ввели две составляющих – аддитивную и мультипликативную. Аддитивная коррекция (АК) самообучения «работает» на холостом ходу, а мультипликативная (МК) – в режиме частичных нагрузок.

АК измеряют в процентах. Ее граничные пределы – от -10% до +10%. МК – величина безразмерная и может изменяться от 0,75 до 1,25. Если любая из этих составляющих самообучения приблизится к граничным показателям (в любую сторону), контроллер зажжет лампу «Check engine» и запишет ошибку РО171 или РО172 (слишком бедная или богатая смесь).

Смысл коэффициентов коррекции самообучения состоит в том, чтобы поддерживать коэффициент длительности впрыска (КД), близким к единице (0,98-1,02). Рассмотрим пример. Допустим, в результате старения ДМРВ смесь обедняется на 15%. Контроллер увеличит длительность впрыска, в результате чего КД возрастет до 1,13-1,17 (при среднем значении 1,15). В это время включается режим адаптации, приводя КД к номинальному значению. Значение МК хранится в энергозависимой памяти контроллера, и при последующих запусках двигателя коэффициент будет регулировать состав смеси с учетом погрешности ДМРВ. Аналогично работает и АК, но в режиме холостого хода. Когда же неисправность устранена, вновь ждать адаптации нет нужды – достаточно отключить аккумулятор, чтобы значения КД, АК и МК сбросились к начальным. Второй вариант – применить функцию сканера «сброс адаптаций».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *