Мотор gdi: Преимущества и недостатки двигателей GDI, TCI, FSI

Двигатель GDI: история, особенности, нюансы работы

В чем заключается принципиальное отличие нового двигателя от стандартных решений?

В классических инжекторных двигателях с коллекторной системой образования смеси в цилиндры подается уже готовая топливно-воздушная смесь, качество которой определяет мощность мотора, уровень токсинов в выхлопных газах. Смешивание горючего и воздуха осуществляется во впускном коллекторе с форсунками, которые управляются электроникой. Отличительная особенность двигателей GDI — форсунка, направленная прямо в камеру сгорания. Впускные клапаны в этой системе служат только для подачи воздуха, а уже в самих цилиндрах смешивается топливо и воздух. Электрическая искра отвечает за зажигание. Так как обеспечить однородный состав смеси в этих условиях проблематично, производители оснастили двигатель GDI сложным электронным блоком с программным обеспечением, рассчитанным на различные рабочие циклы.

Еще нюанс — упорядоченная структура топливно-воздушной смеси в цилиндре, причем смесь эта перемещается по определенной траектории, имея разный уровень концентрации в зависимости от места нахождения: у стенок цилиндра смесь «холодная», возле свечи «горячая», то есть уровень концентрации, необходимый для работы, создается непосредственно возле свечи, что позволяет двигателю работать даже на обедненной смеси.

Работа на обедненной топливно-воздушной смеси при небольших нагрузках — основное достоинство двигателей GDI, так как такой принцип работы позволяет заметно снижать расходы топлива при движении в городском или смешанном цикле. Исследования показали: при длительной работе двигателя на холостых оборотах в городском заторе затраты горючего удается снизить на 20-25%.

Двигатели GDI: разновидности впрыска горючего

Для рынков Японии и европейских стран предназначены разные типы двигателей 4G93. Мы поговорим о японских моделях, которые оснащены двумя системами впрыска топлива:

  1. Работа на сверх бедных смесях. В этом режиме двигатель способен работать на очень обедненной топливно-воздушной смеси, параметры которой могут колебаться в диапазоне 37:1 — 43:1. За идеальный вариант принимается пропорция 40:1. В таком режиме двигатель способен работать на скорости до 120 км/ч, если машина разгоняется плавно;
  2. Работа на стехиометрической смеси. Режим запускается на скорости более 120 км/ч или, если двигатель подвергается повышенным нагрузкам — при наличии у автомобиля прицепа, при подъеме в горку и так далее.

Европейские двигатели имеют третий режим работы, который включается при высоких нагрузках на малых оборотах (такое случается при стремительном разгоне с 40 км/ч на высоких передачах). Принцип этой системы достаточно прост: двойной впрыск топлива в цилиндры обеспечивает мотор обогащенной топливно-воздушной смесью, что приводит к повышению уровня эластичности мотора, крутящего момента при низких оборотах.

GDI и черные свечи

Существует несколько причин, по которым свечи на GDI могут быть черные: помимо традиционных — неверное зажигание, наличие в камере сгорания масла, неправильно подобранный вид свечи, к причинам «засаживания» следует отнести неправильный состав топливно-воздушной смеси — сажа со стенок впускного коллектора попадает в камеру сгорания, препятствуя созданию запрограммированного «воздушного винта» и приводя к некачественному перемешиванию топлива и воздуха.

Остановить процесс «засаживания» нельзя, но можно его существенно замедлить, уделяя пристальное внимание регулярной чистке впускного коллектора. При этом не стоит забывать, что не только коллектор приводит к загрязнению свечей: к возникновению проблемы причастны клапаны, на которых также накапливается сажа, и которые препятствуют правильному распылу топлива.

Радует тот факт, что особенная схема смесеобразования делает GDI двигатель не слишком чувствительным к чистоте свечей, поэтому первое время на цвет этих элементов можно большого внимания не обращать. Но не обольщайтесь слишком сильно: через каждые 15-20000 километров комплект свечей требуется менять.

GDI: свечи

Среди наиболее распространенных свечей заживания, используемых в двигателях GDI, можно выделить:

  • иридиевые;
  • платиновые;
  • двухконтактные.

Последний вариант представляет собой наиболее оптимальное соотношение цены и качества.

Несколько слов об особенностях непосредственного впрыска

Чтобы суметь воплотить в реальность все теоретические преимущества системы непосредственного впрыска, японцы разработали конструкцию — днище поршня адаптированной формы, который направляет топливный «факел» непосредственно к свече зажигания. Кроме того, специалисты обеспечили максимально высокое давление горючего в системе (50 бар против традиционных трех), в головке блока для повышения эффективности завихрения воздушных потоков в цилиндре создали впускные вертикальные каналы.

Пришлось также устранять проблему токсичности. Сгорание обедненной топливной смеси приводит к активному выделению ядовитых окислов азота NOx. Для очистки выхлопа до европейских норм были созданы каталитические нейтрализаторы.

Практические рекомендации для владельцев авто с двигателями GDI

Самый важный момент: качество топлива, заливаемого в бак, должно быть максимально высоким. Единственно приемлемый вариант — чистое, высокооктановое топливо. Никакого этилированного бензина, никаких очистителей и присадок и прочее.

Откуда взялся этот запрет? Его диктуют особенности строения двигателя. Не важно, оснащен ли двигатель клапаном мембранного типа или плунжерами, речь идет о деталях повышенной точности. При наличии в топливе грязи или посторонних примесей, ТНВД через время просто «сядет» и уже не сможет обеспечить требуемое нагнетание топлива в вихревые форсунки с необходимым давлением.

Разумеется, конструкторы разработали систему очистки топлива, включающую в себя четыре ступени — это очистка:

  • «сеткой» топливоприемника насоса;
  • стандартным топливным фильтром;
  • при поступлении бензина в ТНВД с помощью «сеточки-стакана»;
  • через «сеточку-стакан», когда топливо выходит в бак.

Представленная система очистки наверняка хороша — для высококачественного бензина, но не для нашего топлива, поэтому очень важно пристально следить за работой двигателя, отмечая малейшие отклонения от нормы.

Так, нужно срочно начинать предпринимать действия (лететь на всех порах на СТО), если вы видите, что показатели мощности и приемистости двигателя начинают снижаться. Если вы проигнорируете этот момент, через некоторое время двигатель просто откажется заводиться и придется обращаться в мастерскую, чтобы произвести ремонт ТНВД «Мицубиси», BOSCH, Toyota.

Вместо вывода

Сегодня, к сожалению, авто с двигателями GDI не способны долго ездить на российском топливе. Если же вы все-таки стали владельцем машины с двигателем GDI и отказываться от своего приобретения не желаете, уделяйте своему транспортному средству максимум внимания — через каждые несколько тысяч км проводите полноценную очистку ТНВД в специализированной мастерской.

Двигатель GDI: плюсы и минусы выбора

Аббревиатура двигателя «GDI» (Gasoline Direct Injection) подразумевает под собой непосредственное введение топлива в цилиндры мотора (бензинового двигателя).

Именно компания GDI стала первым производителем, начавшим выпуск силовых установок с подобной системой впускания топливной жидкости. Данный тип двигателя заслужил достаточно неоднозначный ряд отзывов, поэтому стоит разобрать этот вопрос подробнее.

Как правило, стандартный инжекторный двигатель, использующий коллекторный способ смесеобразования, вводит в цилиндр цельную бензовоздушную смесь. Подобное смешение горючего и воздуха проистекает во впускной трубе (коллекторе), где находятся механический распылитель (форсунки), управляемые электроникой. В двигателе GDI форсунка обращена к камере сгорания, поэтому впускные клапаны подают только воздух, а непосредственно, смесеобразование происходит в цилиндрах.

Система GDI управляется электронным устройством, наделенным специальным программным обеспечением, которое рассчитано на определенное количество рабочих циклов. Также, с целью получения наиболее совершенных условий смесеобразования в конструкции применяются «вихревые» форсунки, подающие топливную смесь внутрь в качестве тонкодисперсного вещества. Также двигатель оснащен двухступенчатой системой подачи топливной жидкости.

Двигатели GDI отличаются своей экономичностью, отвечают высоким стандартам экологичности.

История развития двигателей GDI

Впервые система непосредственного впрыска топлива стала применяться на двигателях данной модели, которые устанавливались на автомобили известных компаний Mercedes и Mitsubishi в середине ХХ столетия. В дальнейшем и другие крупные автомобильные компании (такие как Toyota, Nissan, Volkswagen, Honda) стали использовать двигатели системы GDI.

Комплектующие GDI двигателя:

  1. ТНВД (топливный насос высокого давления)
  2. Предохранительный клапан (трубопроводная арматура)
  3. КВД (камера высокого давления) с регулятором давления топлива.
  4. Механический распылитель.
  5. ПЛК (программный логический контроллер)
  6. Клапан для поддержания среды давления.
  7. Фильтрующий элемент (фильтр ультратонкой очистки)
  8. Насос низкого давления.
  9. ВД-датчик (датчик высокого давления)
  10. Топливная рампа.

Преимущества системы GDI

Возможность работать на обедненной смеси, при условии отсутствия больших нагрузок, а также пониженный расход топлива при эксплуатации в разных циклах (городской, смешанный). При длительной работе устройства на холостом ходу трата топлива снижается на 20-25%. Но при быстром движении двигатель будет требовать такое же количество горючего, сколько силовая установка с распределенным введением топлива.

Преимуществом двигателя можно назвать также процесс образования смеси, происходящего в камере сгорания, благодаря чему и осуществляется экономичный расход горючего, малая токсичность выхлопных газов. Изменение образования смеси дает повышенную мощность тяги на 15-20%. Снижена возможность поломки двигателя в результате забивания масляных клапанов продуктами сгорания.

Недостатки системы GDI

Сложная система впуска принципиально схожа с дизельной силовой установкой в состав которой входит также ТНВД. Использование подобных устройств приводит к тому, что система GDI делается очень восприимчивой к качеству горючего. Минусы заключаются в возможных частых сбоях работы мотора, особенно при заправке топливом низкого качества.

GDI-двигатели плохо поддаются ремонту, по сравнению с устройствами со стандартным распределением впрыскивания топлива. Недостаток также заключается в малой распространенности запасных частей к подобным двигателям, их ожидание может занимать до 2-3 недель.

Выводы

Двигатели GDI обладают высоким уровнем мощности и тяги, они обеспечивают экономию горючего, но при этом очень требовательны к качеству горючего, поэтому их эксплуатация в условиях российских дорог может повлечь за собой постоянный ремонт, который отличается своей дороговизной. Однако, сейчас имеются в продаже автомобили которые прошли адаптацию: заправляются бензином, реализующимся на заправках России, что не создает высоких материальных трат.

Standard® Бензиновый непосредственный впрыск (GDI)

Бензиновый непосредственный впрыск (GDI) используется на большинстве новых автомобилей и требует другого подхода к диагностике и обслуживанию. Технология GDI была неотъемлемой частью помощи в повышении экономии топлива при одновременном снижении выбросов, и ее можно найти более чем на половине парка автомобилей в США. Фактически, с 2010 года использование механизмов GDI выросло более чем на 600 %. Хотя системы GDI в значительной степени полезны, эти системы сталкиваются со специфическими сбоями и требуют понимания того, как они работают и как их тестировать, когда они устанавливают код.

GDI Spotlight

Лидирующая на рынке послепродажная программа Standard® GDI основана на форсунках, а также включает в себя топливные насосы высокого давления, комплекты топливных форсунок, датчики давления топлива, линии подачи топлива, регуляторы давления топлива и датчики давления топлива. Разъемы датчиков для полной линейки компонентов GDI.

Инжекторы Standard® GDI всегда новые, а не восстановленные.

Модельный ряд Standard GDI включает в себя сотни артикулов для отечественных и импортных автомобилей, включая приложения до 2022 года, обеспечивая лучший в отрасли охват последних моделей. Чтобы узнать больше, посетите www.StandardGDI.com.

Почему GDI?

Чтобы соответствовать более строгим стандартам выбросов и CAFE (средняя корпоративная экономия топлива), производители начали внедрять двигатели GDI примерно в 2006 году. Топливные форсунки на двигателе GDI впрыскивают топливо непосредственно в камеру сгорания. Впрыск происходит в основном на такте впуска, а в некоторых случаях и на такте сжатия. По мере увеличения оборотов двигателя количество времени, доступное для впрыска топлива, уменьшается. Чтобы увеличить подачу топлива за более короткий промежуток времени для получения большей мощности, давление топлива увеличивается. Давление в топливной рампе двигателя GDI обычно колеблется от 300 фунтов на квадратный дюйм на холостом ходу до 2200 фунтов на квадратный дюйм при полной нагрузке.

Выше приведена типовая схема топливной системы GDI. Топливный насос низкого давления расположен в топливном баке. Насос низкого давления снабжает механический насос высокого давления с кулачковым приводом топливом под давлением 50-80 фунтов на квадратный дюйм. Затем механический насос создает необходимое высокое давление и подает топливо под высоким давлением в топливную рампу. Величина давления, создаваемого в топливной рампе, определяется управляемым блоком управления двигателем соленоидом подачи топлива, который обычно является частью механического насоса.

Диагностика

Бывают случаи, когда технический специалист должен выполнить диагностический тест-драйв GDI, чтобы оценить систему GDI и выявить неисправности. Это может помочь в выявлении периодически возникающих неисправностей или характеристик системы, которые еще не являются достаточно серьезными, чтобы ECM мог установить диагностический код. Сканирующий прибор должен быть настроен на регистрацию, как минимум, следующих PID:

  • Число оборотов двигателя
  • Угол открытия дроссельной заслонки
  • Требуемое давление в топливной рампе
  • Фактическое давление в топливной рампе
  • Команда объема насоса GDI

Технический совет: Могут быть случаи, когда PID фактического давления в топливной рампе недоступен на стороне OE сканирующего прибора. В этом случае или если диагностический прибор технического специалиста не может отображать данные сканирования OE, можно использовать универсальную сторону диагностического прибора. Стандарт SAE J1979 используется производителями для определения необходимых PID для универсальной OBD. Стандарт J1979 включает PID давления в топливной рампе для двигателей GDI.

Чтобы собрать необходимые данные для анализа, транспортное средство должно эксплуатироваться при различных нагрузках двигателя. Сканирующий прибор должен быть настроен на запись PID данных двигателя, выбранных ранее перед тестовой поездкой. Дав двигателю поработать на холостом ходу, техник должен увеличить скорость и удерживать APP на уровне около 20%. Затем подайте команду полностью открыть дроссельную заслонку, вернитесь к команде APP 20% и, наконец, остановитесь и дайте двигателю поработать на холостом ходу.

Собранные данные необходимо будет просмотреть, чтобы конкретно изучить желаемое и фактическое давление в топливной рампе. Способна ли топливная система обеспечить желаемое давление топлива? Если нет, необходимо проверить команду регулятора топливного насоса. Пытался ли ECM увеличить количество топлива, подаваемого в насос высокого давления?

Обслуживание GDI

Технический совет: Даже при выключенном двигателе давление в топливной рампе может быть очень высоким. Попытка снять топливные магистрали высокого давления в это время может быть опасной.

Перед обслуживанием компонентов топливной системы GDI крайне важно, чтобы в топливной системе не осталось давления. В некоторых автомобилях можно сбросить давление с помощью команды диагностического прибора на ECM, в то время как в других потребуется удаление предохранителя или реле насоса низкого давления. Затем следует завести автомобиль и дать ему поработать на холостом ходу, пока не закончится топливо и он не заглохнет.

Перед разборкой топливной системы GDI для обслуживания очень важно прочитать сервисную информацию. Большинство топливопроводов высокого давления являются одноразовыми компонентами. Когда они затянуты вниз, они деформируются, обеспечивая плотное прилегание. В приведенном выше примере вы увидите GM 3,6 л V6 со снятым впускным коллектором. Обратите внимание на желтые метки на линиях высокого давления, указывающие на то, что их нельзя использовать повторно. Другие производители могут не использовать этикетки, вместо этого рекомендуя в сервисной информации выбрасывать эти строки после удаления. Повторное использование этих трубопроводов может привести к утечке топлива под высоким давлением, что может привести к катастрофическому пожару.

Также необходимо определить все инструменты, необходимые для выполнения задачи по замене топливных форсунок. Служебная информация должна быть внимательно прочитана для получения этой информации. После снятия таких компонентов, как впускной коллектор, чтобы получить доступ к топливной рампе, важно отметить, что существует два основных типа соединений форсунки с топливной рампой. В некоторых случаях топливные форсунки крепятся к топливной рампе. При снятии топливной рампы в этих случаях топливная рампа и все топливные форсунки отсоединяются от двигателя как единое целое.

Инжекторы Standard® GDI всегда новые и никогда не подвергались восстановлению. Они точно спроектированы и тщательно протестированы для обеспечения оптимальной производительности.

В устройствах, не использующих фиксирующий зажим, при снятии топливной рампы вы можете обнаружить, что некоторые топливные форсунки остались в головке блока цилиндров, а остальные выходят, все еще прикрепленные к топливной рампе. Сняв топливные форсунки, обязательно очистите отверстия в головке цилиндров проволочной щеткой подходящего размера и замените уплотнения на всех топливных форсунках, которые будут использоваться повторно. Обязательно завершите установку, используя соответствующий момент затяжки и процедуру затяжки.

Советы по замене компонентов GDI можно найти по запросу «GDI» на YouTube-канале Standard Brand.

При поддержке SMP.

F.Y.I. | Компания свечей зажигания NGK | Carter Fuel Systems

Число автомобилей с бензиновым двигателем с непосредственным впрыском (GDI) на дорогах увеличивается с каждым годом. Практически у каждого производителя транспортных средств есть по крайней мере одна модель на дорогах или запланированная к выпуску в ближайшее время. По последним оценкам, 40% автомобилей с бензиновым двигателем, проданных в США в 2015 году, были оборудованы GDI, а примерно 65% ожидаются в 2021 году. Subaru является недавним дополнением, и Fiat Chrysler Group скоро добавит модели.

Что это значит для вас? Если вы в настоящее время не обслуживаете автомобили GDI, вы будете в ближайшем будущем. Автомобили GDI начали появляться в США примерно в 2004 году, и многие OEM-производители выпустили модели в период с 2010 по 2011 год, что означает, что этим автомобилям от четырех до пяти лет, и гарантийные сроки большинства производителей истекли.

В течение последних двух лет компания Bosch спонсировала мобильные учебные автомобили для обучения техников этой новой технологии и проверки их знаний в виртуальном 3D-гараже с полным погружением. Одна вещь, которую узнали во время этих событий, это то, что технические специалисты слышали о GDI, но большинство из них не были уверены, как диагностировать такую ​​систему. В этой статье дается краткий обзор типичной топливной системы GDI и предлагается информация о том, как диагностировать систему, а также о любых потенциальных проблемах, связанных с обслуживанием.

На иллюстрации на стр. 32 показаны компоненты, связанные с типичной топливной системой GDI.

Большинство компонентов управления двигателем идентичны двигателю с впрыском топлива во впускной коллектор (PFI), включая топливный насос низкого давления, который подает топливо низкого давления к насосу высокого давления. Типичный диапазон насосов низкого давления составляет от 50 до 75 фунтов на квадратный дюйм, в зависимости от применения в автомобиле. Некоторые производители используют датчик давления для проверки давления.

Выход насоса низкого давления обычно управляется модулем управления топливным насосом (FPCM) с входом от модуля управления двигателем (ECM). На холостом ходу и при малой нагрузке требуется меньше топлива, поэтому процент рабочего цикла ниже. Рабочий цикл увеличивается, когда требуется больший объем топлива для ускорения и больших нагрузок.

Насос высокого давления, который в большинстве транспортных средств приводится в действие механически кулачком распределительного вала, нагнетает топливо низкого давления примерно с 600 фунтов на квадратный дюйм на холостом ходу до 2900 фунтов на квадратный дюйм при высоких нагрузках (от 40 до 200 бар для метрических моделей).

Топливо под высоким давлением подается к форсункам высокого давления по магистрали высокого давления, в состав которой входит датчик давления топлива (ДДТ). FPS передает в ECM фактическое давление в рампе и регулирует давление с помощью соленоида управления давлением, установленного на насосе высокого давления.

Соленоид управления давлением имеет множество названий, но в этой статье я буду называть его клапаном регулирования объема (VCV).

Используются два типа форсунок высокого давления — с соленоидным приводом и с пьезокристаллом. Оба требуют опасного напряжения до 120 В, поэтому вы всегда должны следовать рекомендациям производителя по тестированию и обслуживанию.

Большинство автомобилей с четырьмя цилиндрами имеют один насос GDI, но двигатели V6 и V8, скорее всего, будут иметь два насоса, по одному на каждый ряд топлива.

Первым шагом в процессе диагностики является проверка состояния компонентов давления на стороне низкого и высокого давления. Первоначальная проверка довольно проста и может быть выполнена с помощью усовершенствованного сканирующего прибора и двух параметров данных (PID) — желаемого давления в топливной рампе и фактического давления в топливной рампе. Важно проверить давление во всех рабочих диапазонах, чтобы полностью проверить топливную систему. Проблемы обычно начинают проявляться при более высоких нагрузках двигателя и со временем становятся все хуже. На диаграмме на стр. 34 показаны четыре снимка экрана диагностического прибора, сделанные при различных условиях нагрузки во время дорожного испытания.

Захват при включенном двигателе (KOEO) обеспечивает текущее давление от насоса низкого давления. PID Fuel Rail (P) Des — это желаемое давление для ECM; Топливная рампа (P) — это фактическое давление. В этом случае ECM запрашивает 55 фунтов на квадратный дюйм, а фактическое давление составляет 55 фунтов на квадратный дюйм. Этот захват показывает статическое давление без использования топлива двигателем.

Запись скорости холостого хода ниже показывает, что желаемое давление в топливной рампе составляет 600 фунтов на квадратный дюйм, а фактическое — 550 фунтов на квадратный дюйм. Как правило, если разница между заданными и фактическими значениями превышает ±10%, вы должны это отметить, но в конечном итоге ECM определит, когда отклонение слишком низкое или слишком высокое, и установит соответствующий код неисправности.

(Обычные коды неисправностей: P0087 — Слишком низкое давление топлива или P0088 — Слишком высокое давление топлива.) При выполнении этого теста важно дать топливной системе стабилизироваться, прежде чем принимать окончательное решение; 20-30 секунд должно быть достаточно. В этом примере фактическое давление немного ниже, но все еще находится в диапазоне ±10%.

Снимок легкой нагрузки в правом верхнем углу показывает, что требуемое давление составляет 1800 фунтов на квадратный дюйм, а фактическое — 1440 фунтов на квадратный дюйм, что ниже на 20 %, но все еще недостаточно для установки кода неисправности. Вы можете ясно видеть, что проблема усугубляется — разница составляет 8% на холостом ходу, а теперь разница составляет 20% при малой нагрузке.

Захват большой нагрузки показывает, что желаемое давление составляет 2100 фунтов на квадратный дюйм, а фактическое — 1500 фунтов на квадратный дюйм, что составляет теперь разницу в 28%. Таким образом, при большой нагрузке устанавливается код P0087.

Мониторинг двух данных PID подтвердил проблему, но для ее дублирования потребовалось полное дорожное испытание.

В этот момент два дополнительных PID будут полезны для диагностики этой неисправности. На графике % VCV топлива — это описанное ранее значение VCV, которое ECM использует для управления количеством топлива низкого давления, поступающего в насос высокого давления. Топливный насос % — это рабочий цикл насоса низкого давления, который регулирует скорость насоса и объем топлива, доступный для насоса высокого давления.

Захват холостого хода показывает процентное соотношение 15% для VCV и 24% для топливного насоса. К сожалению, найти спецификации для этих PID непросто, поэтому подключение к заведомо исправным автомобилям помогает получить базовый уровень. В этом примере (Ford Escape) заведомо исправные значения будут составлять примерно 8% для VCV и 23% для рабочего цикла топливного насоса. ECM видит, что фактическое давление топлива немного низкое, и пытается увеличить объем топлива в насосе высокого давления, чтобы компенсировать это.

Захват легкой нагрузки показывает большой скачок VCV до 45%, в то время как рабочий цикл насоса низкого давления увеличился до 29%. Это означает, что ECM запрашивает значительное увеличение объема топлива от насоса низкого давления для достижения желаемого значения 1800 фунтов на квадратный дюйм. ECM смог увеличить давление топлива, что означает, что клапан VCV работает, но желаемое давление топлива не может быть достигнуто. Разницы между желаемым и фактическим по-прежнему недостаточно для установки кода неисправности.

Захват большой нагрузки в правом нижнем углу показывает 50% VCV и 40% рабочий цикл топливного насоса, которые в данном случае представляют собой максимальные значения для этих компонентов, поскольку это относится к критериям кода неисправности. Вы можете подумать, почему бы не увеличить оба компонента до 100% и посмотреть, можно ли достичь желаемого давления? Инженеры, программирующие эти системы, довольно сообразительны и знают, что как только перепад давления топлива превышает заданную точку, всякая надежда теряется и следует установить код неисправности.

В этом примере автомобиль по-прежнему может управляться, но плохо работает в условиях высокой нагрузки. В этот момент ECM зажжет индикатор Check Engine и установит код неисправности низкого давления P0087, поскольку разница между требуемым и фактическим давлением превышает 25%, что было установлено в критериях кода неисправности. Хорошие новости? Клиент по-прежнему сможет привезти автомобиль для обслуживания до того, как он застрянет на обочине дороги.

На этом этапе вам необходимо определить, какая часть топливной системы неисправна — сторона низкого давления или сторона высокого давления. Глядя на проценты VCV и топливного насоса, вы можете получить некоторое представление, но не можете подтвердить, какой компонент неисправен, без дальнейшего тестирования. Лучший способ действий — сначала начать проверку стороны низкого давления и продвигаться вперед в системе.

Одно предостережение: вы не можете полагаться исключительно на датчик давления и/или манометр для проверки состояния нагнетательного насоса на стороне низкого давления. Важно проверить выходной объем топливного насоса. В части диаграммы KOEO желаемое и фактическое давление совпали; однако автомобиль не работает и объем топлива не расходуется. На холостом ходу фактическое давление на 8% ниже желаемого, и с повышением нагрузки расщепление становится все хуже. Топливный насос низкого давления способен обеспечить достаточный объем при низком спросе, но недостаточный при высоком спросе. Требовалась замена топливного насоса низкого давления.

После устранения стороны низкого давления следующим компонентом системы, подлежащим проверке, является насос высокого давления. Наиболее вероятной причиной появления кода неисправности низкого давления может быть износ между насосом высокого давления и распределительным валом. Неисправность высокого давления, скорее всего, связана с неисправностью VCV или внутренней неисправностью насоса высокого давления. Вам необходимо следовать рекомендациям производителя по проверке и тестированию насоса высокого давления и твердых деталей.

Наиболее распространенной проблемой топливных систем GDI является накопление углерода на впуске и на обратной стороне впускных клапанов. К сожалению, это нелегко обнаружить, и оно может отличаться от производителя к производителю и от автомобиля к автомобилю. В номере журнала Motor за декабрь 2014 года Сэм Белл написал статью «GDI: отложения бензина внутри?» что обязательно к прочтению. Я предлагаю краткий обзор и предложу еще несколько идей на эту тему.

На рисунке слева ниже показана типичная конфигурация с впрыском топлива через порт, а на рисунке справа показана типичная конфигурация GDI, в которой топливо впрыскивается непосредственно в камеру сгорания. В этом примере форсунка расположена в центре камеры сгорания, что определяет ее как систему с распылением. Если бы инжектор располагался под углом, его можно было бы назвать настенной системой.

На рисунке слева показано, как топливо для следующего цикла сгорания впрыскивается в камеру сгорания вместе с воздухом вокруг впускного клапана. ECM может впрыскивать топливо перед следующим открытием впускного клапана с конечной целью равномерного смешивания воздуха и топлива, что должно создать качественную горючую однородную воздушно-топливную смесь. При попадании в камеру сгорания воздушно-топливная смесь обеспечивает встроенный процесс самоочистки впускных и впускных клапанов.

На рисунке справа показан воздух, поступающий вокруг впускного клапана; вскоре после этого топливо впрыскивается непосредственно в камеру сгорания. Воздух и топливо смешиваются вместе, пока поршень движется вниз на такте впуска и когда смесь сжимается во время такта сжатия. ECM имеет очень короткое окно для впрыска топлива; для полного смешивания воздуха и топлива не так много времени.

Мы уже упоминали, что автомобили GDI страдают от накопления углерода, но как он туда попадает? Каким образом чистый воздух, который фильтруется для удаления пыли, проходя через совершенно новую систему впуска, вокруг чистых впускных клапанов и в камеру сгорания, производит углерод? Кажется, это не имеет никакого смысла.

Фотографии в верхней части страницы 36 были сделаны для двух из восьми впускных клапанов BMW 750Li F02 N63 2010 года выпуска с пробегом почти 65 000 миль. На всех восьми впускных клапанах был нагар, но что меня удивило, так это то, что нагар на всех цилиндрах был разным. Верхнее фото — цилиндр 4, на котором виден более темный спеченный углерод; среднее фото — цилиндр 6, на котором виден сухой, может быть, мягкий углерод.

Если вы никогда не работали с автомобилем GDI, теперь вы знаете, как выглядит нагар на обратной стороне клапанов. Итак, вернемся к вопросу: как туда попал углерод? Ответ прост и сложен одновременно. Ответ прост: неполное сгорание. Вы можете подумать, что если у нас неполное сгорание в цилиндре, углерод должен просто выйти из выхлопной трубы. Как он попадает обратно на впускной тракт двигателя?

В идеальном мире правильное количество воздуха и топлива попадет в камеру сгорания, произойдет идеальное сгорание и чистые выбросы выйдут через выхлопную трубу. Но двигатель внутреннего сгорания , а не идеален, как и топливно-воздушная смесь. Углерод, образующийся при неполном сгорании, может перемещаться в двигателе по ряду направлений. Простой путь выходит из выхлопной трубы во время такта выпуска, что создает другую проблему, к которой мы вернемся через минуту.

Некоторая часть нагара попадает вокруг поршневых колец в моторное масло, и именно здесь, по мнению большинства экспертов, углерод, взвешенный в моторном масле, попадает во впуск через систему принудительной вентиляции картера (PCV). Использование неподходящего моторного масла, увеличенные интервалы замены масла, грязные воздушные фильтры и мокрые системы вентиляции картера способствуют образованию смеси масла и углерода во впускной зоне.

Другой путь для углерода лежит вокруг впускных клапанов во время такта выпуска, когда и впускной, и выпускной клапаны открыты. Это важный момент; не забудьте проверить бюллетени технического обслуживания, в которых может быть предложено перепрограммирование для уменьшения накопления углерода.

Это возвращает нас к теме углерода, который выталкивается вокруг выпускного клапана после сгорания. В своем исследовании для этой статьи я нашел много статей и исследований, связанных с твердыми частицами от автомобилей GDI. В таблице на странице 36 показаны результаты исследования Калифорнийского совета по воздушным ресурсам (CARB), которое использовалось для понимания и разработки будущих стандартов выбросов, связанных с твердыми частицами (ТЧ). Для простоты, Фаза 1 в основном выполняется с холодным двигателем, а Фаза 3 — с прогретым двигателем. Первый ряд легко понять, поскольку все мы знаем, что дизели создают ТЧ, поэтому они оснащены сажевым фильтром (DPF). В четвертой строке показаны результаты с DPF. Во втором и третьем рядах отчетливо видны твердые частицы от двигателей GDI, но они менее выражены, когда двигатель прогрет, а двигатель PFI достаточно чистый.

Это заставило меня задуматься о другом источнике накопления углерода во впускном коллекторе. Большинство автомобилей GDI имеют систему рециркуляции отработавших газов (EGR), и мы все сталкивались с результатами накопления углерода в клапанах EGR. Исходя из того, что мы видим из таблицы на стр. 34, вполне возможно, что часть ТЧ, выходящих из двигателя, рециркулируется обратно во впуск через систему рециркуляции отработавших газов и смешивается с углеродом из газов PCV.

Результаты исследования CARB принесут новые стандарты РМ. Текущие стандарты составляют 10 мг/мл. сейчас 3мг/миль. начиная с 2017 г. и 1 мг/млн. намечены на 2025 год. Как производители транспортных средств будут соответствовать будущим стандартам выбросов ТЧ? Это еще одна интересная история, которая может решить некоторые проблемы накопления углерода.

Новый двигатель Audi 1,8 л TFSI GDI будет включать две системы впрыска — порт и непосредственный впрыск. Система PFI будет использоваться, когда вероятно формирование PM, а GDI будет использоваться в других режимах работы. Таблица наглядно показывает преимущества обоих вариантов впрыска. В новом двигателе Subaru также используется формат с двумя впрысками, и другие производители рассматривают его.

Это, конечно, не поможет ранним машинам GDI, но может решить проблему по мере продвижения вперед. И последнее замечание по поводу твердых частиц: мы уже знаем, что DPF творит чудеса с дизельными двигателями, поэтому добавление сажевого фильтра для бензиновых двигателей может стать еще одним решением для бензиновых двигателей.

Как бороться с нагаром в двигателе? Сэм Белл хорошо описал большинство доступных вариантов очистки, и с тех пор, как была написана эта статья, мало что изменилось. На приведенных выше фотографиях ясно видно, что образование нагара в разных местах одного и того же двигателя отличается от цилиндра к цилиндру, и для каждого цилиндра могут потребоваться разные методы очистки. На нижнем фото показаны результаты после очистки скорлупы грецкого ореха.

Мой лучший совет — начать с обзора рекомендаций производителя, проверить наличие новых сервисных бюллетеней и, если возможно, узнать у местного дилера, что он делает. Всегда имейте в виду, что все, что вы вводите в двигатель, воздухозаборник и камеру сгорания, будет иметь потенциальные побочные эффекты.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *