Как мультиметром проверить конденсатор на трамблере: 403 — Доступ запрещён – Как проверить конденсатор на трамблере мультиметром и тестером

Содержание

Как проверить конденсатор на работоспособность мультиметром и без прибора

Конденсатор — небольшая, но важная часть электронных систем автомобиля. Он отвечает за накопление и сохранение электрического тока, создаёт определённый показатель напряжения в компонентах и решает ряд других задач. Увы, это изделие иногда выходит из строя. Работа с электрическими компонентами — опасное дело, но при необходимости работоспособность конденсатора можно легко проверить.

Как работает этот компонент

Изделия защищают электронные компоненты от разного рода помех и используются во множестве систем вашей машины. Ключевой функцией приспособления является фильтрация — например, в автоакустике. Без конденсатора музыкальная система будет работать плохо: возникнут посторонние шумы, помехи и изменения громкости. Все это является следствием скачков напряжения в электросети авто.

Конденсаторы есть во многих частях автомобиля. Они играют роль буферов между аккумуляторами и другими электронными приспособлениями. Без такого изделия невозможно функционирование не только акустики, но и контактного механизма в распределителе зажигания.

На фото: схема системы батарейного зажигания с цифровым обозначением компонентов:

  1. Аккумулятор.
  2. Включатель стартера.
  3. Включатель зажигания.
  4. Первичная обмотка.
  5. Вторичная обмотка.
  6. Катушка зажигания.
  7. Распределитель.
  8. Прерыватель.
  9. Конденсатор.
  10. Свеча зажигания.
Схема работы батарейного зажиганияСхема работы батарейного зажиганияСхема батарейного зажигания. Конденсатор отмечен цифрой «9»

Типы автомобильных конденсаторов

  1. Для генератора. Подаёт электричество в работающий генератор, предотвращает перепады напряжения в зажигании, ликвидирует шумы радиоприёмника. Если в генераторе авто нет конденсатора, проезжающий мимо транспорт вызовет сильный шум на радио. Благодаря этому изделию удаётся защититься от дискомфорта в пути.

    Внешний вид автомобильного конденсатораВнешний вид автомобильного конденсатораТак выглядит автомобильный конденсатор

  2. Для сабвуфера. Автоусилитель обеспечивает более полное насыщение баса и расширяет диапазон воспроизведения частот, однако он сильно увеличивает потребление тока, что приводит к проблемам со светом фар и плохому качеству воспроизведения низких частот. Хорошо работающий конденсатор — гарантия защиты от проблем.

Как понять, что нужна диагностика прибора

О неисправности конденсатора свидетельствуют разные признаки. Фары, мигающие в такт басам автомобильной акустики, означают, что электронные компоненты авто не получают достаточного напряжения. В ряде случаев сигналы начинают искажаться, отдельные компоненты машины работают некорректно.

Конденсатор зажигания отвечает за выработку искры, которая воспламеняет топливовоздушную смесь в цилиндре двигателя. Если искра имеет слабый красный цвет и появляется неравномерно, если не удаётся нормально завести авто — вполне вероятно, что возникли проблемы с конденсатором.

Важно не допускать проблем с конденсатором зажигания. Они возникают по трём причинам:

  • если изделие потеряло часть ёмкости,
  • если возник внутренний обрыв,
  • если произошло короткое замыкание.

Первые два варианта особенно коварны, поскольку зажигание не сразу выходит из строя. Функционирование компонентов продолжается, хотя искра уже не может иметь нужного уровня мощности. Главные признаки поломки в такой ситуации — неустойчивость работы двигателя на холостом ходу, проблемы с запуском. Обязательно проверьте конденсатор и при необходимости замените его! Если этого не сделать, искры от прерывателя вызовут подгорание контактов, что выведет силовой агрегат из строя.

Как проверить работоспособность

Надёжный способ выявить неисправность — воспользоваться омметром или мультиметром в режиме омметра. Для наиболее полного тестирования подготовьте следующие инструменты:

  • сам измерительный прибор;
  • переносную лампу;
  • заводную ручку.
Конденсатор системы зажиганияКонденсатор системы зажиганияРасположение конденсатора в системе зажигания

Основная проверка выполняется в следующей последовательности.

  1. Переводим омметр в режим верхнего предела измерений.
  2. Подключаем один вывод конденсатора к корпусу для разрядки. Один из щупов омметра соединяем с наконечником провода, другой — с корпусом.
  3. Если показатель быстро отклоняется к «нулю», а затем плавно возвращается к «бесконечности» – всё в порядке. При смене полярности показатель быстро стремится к нулю. Если сразу же высветилось значение «бесконечности», требуется замена.
Омметр и конденсаторОмметр и конденсаторПодключаем омметр к конденсатору

Инструкция по проверке автомобильного конденсатора на видео

Проверка без мультиметра

  1. Отключаем от прерывателя провода, идущие от конденсатора и катушки зажигания. Тут пригодится переносная лампа. Чтобы проверить изделие, присоедините её к зажиму прерывания, затем активируйте зажигание. Произошло включение лампы? Конденсатор работает неправильно.
  2. Ещё один метод проверки работоспособности изделия — зарядка конденсатора катушки зажигания током высокого напряжения и последующая разрядка на корпус. Если между массой и проводом конденсатора появилась искра и раздался характерный щелчок, всё в порядке. Реакции нет? Значит, в конденсаторе есть пробой.
  3. Отсоедините чёрный провод от зажима прерывателя, который идёт от катушки зажигания. Отключите от прерывателя провода конденсатора. Включите зажигание и прикоснитесь одним проводом к другому. Если появится искра — что-то не так. Скорей всего дело в пробое конденсатора.
  4. Заводной ручкой поверните коленвал ДВС и снимите крышку с распределителя зажигания. Включите зажигание. Можно оценить работу конденсатора, следя за возникающими здесь искрами. Если возникла поломка, контакты прерывателя сильно заискрят. Ещё один признак неисправности — слабое искрение между корпусом и главным проводом высокого напряжения.

Состояние конденсатора можно без труда проверить даже в дороге. Возите с собой мультиметр и будьте готовы пустить его в ход — так вы избавитесь от дискомфорта при езде и избежите риска серьёзной поломки.

Как проверить конденсатор мультиметром

Мультиметр – это  электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.

Конденсатор и емкость

Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.

Виды конденсаторов по типу диэлектрика:

  • вакуумные;
  • с газообразным диэлектриком;
  • с неорганическим диэлектриком;
  • с органическим диэлектриком;
  • электролитические;
  • твердотельные.
Электролитические конденсаторы
Обычно используются электролитические конденсаторы

Основные неисправности конденсаторов:

  • Электрический пробой. Обычно вызван превышением допустимого напряжения.
  • Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
  • Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.

Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.

В данном случае присутствует протечка электролитаВ данном случае присутствует протечка электролита

Перед проверкой конденсатора

Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.

До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.

Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.

Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.

Измерение емкости в режиме сопротивления

Измерение в режиме сопротивленияИзмерение в режиме сопротивления

Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.

Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.

Измерение в режиме сопротивленияИзмерение в режиме сопротивления

Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.

Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.

Аналоговое устройствоАналоговое устройство

Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.

Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.

Модели мультиметров на Aliexpress

 

Измерение емкости конденсатора

Измерение ёмкостиИзмерение ёмкости

Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.

Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.

При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.

Измерение емкости через напряжение

Проверка работоспособности детали может производиться и при помощи вольтметра. Значение на мониторе сравнивается с номиналом, и из этого делается вывод об исправности устройства. Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора.

Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным. В ином случае прибор сломан.

Важно! Напряжение проверяется в самом начале измерения. Это связано с тем, что при подключении конденсатор начинает терять заряд.

Другие способы проверки

Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!

Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.

Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.

Сложности проверки

Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.

В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.

Как проверить емкость – видео ролики в Youtube

Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.

Еще одно видео:

Как проверить конденсатор 🚩 для чего конденсатор на трамблере 🚩 Ремонт и сервис

Для этого нужно убедиться, что свечи зажигания вырабатывают искру, с помощью которой производится воспламенение топливовоздушной смеси в цилиндре двигателя. Если одна или несколько свечей выдают слабые искры красного цвета или их появление неравномерно, нужно обратить внимание на работу распределителя зажигания, который еще называют трамблер (от французского «trembleur», что в переводе означает «прерыватель»).

В новых моделях автомобилей вместо механического трамблера используется электронный коммутатор, который в случае отказа меняется целиком. Чтобы обнаружить причину неустойчивой работы трамблера, необходимо снять с него крышку, которая сделана из эбонита. В крышке за время эксплуатации могут возникнуть микротрещины, в которые попадает пыль и грязь, что вызывает пробои в электрической цепи, и напряжение не подается на свечи зажигания. После осмотра крышки нужно уделить внимание зазорам между контактами прерывателя. Также необходимо проверить конденсатор в трамблере. Если зазоры нормальные, а при работе возникает сильное искрение, значит проблема в конденсаторе. Для проверки его работы потребуется амперметр.

Подключив прибор к контактам, включите зажигание и рукой разомкните контакты в трамблере. Понаблюдайте за показаниями стрелки амперметра. Если стрелка или цифровое значение на экране приблизились к нулю с положения разрядки 2-4А, то существует неисправность в работе конденсатора, и его следует заменить.

Также можно проверить конденсатор самостоятельно, когда есть подозрение в пробое на «массу». Для этого потребуется переносная автомобильная лампочка. Сначала нужно отсоединить провод катушки зажигания вместе с проводом конденсатора от зажима прерывателя и произвести подключение к ним переносной лампочки. При включении зажигания лампа не должна гореть. Если она горит, это говорит о том, что конденсатор неисправен.

Есть еще один конденсатор в системе зажигания автомобиля. Он расположен в генераторе и предназначен для снижения помех в радиодиапазоне. Автолюбители старшего возраста помнят, как радиоприемники в автомобилях реагировали сильным шумом на проезжающие мимо грузовики и старые легковые автомобили. Сегодня все генераторы в обязательном порядке укомплектованы конденсатором.

 

Как проверить конденсатор мультиметром на работоспособность

По сути ремонт любой радиоэлектронной аппаратуры сводится к поиску и замене неисправных деталей. И, возможно, вы удивитесь тому, насколько часто выходят из строя такие, казалось бы, простые компоненты как конденсаторы. В то время как нежные диоды, чувствительные транзисторы и сложные микросхемы остаются целыми и невредимыми.

Типичные неисправности конденсаторов:

  • КЗ между обкладками. Как правило, это следствие механического повреждения, перегрева или превышения рабочего напряжения (пробой). Самый простой случай, т.к. легко выявляется любым мультиметром в режиме прозвонки;
  • внутренний обрыв с полной потерей емкости (вот почему нельзя коротить отвертками). В случае с конденсаторами большой емкости этот дефект достаточно просто диагностируется. Выявление обрыва у мелких кондеров (менее 500 пФ) является довольно трудоемкой задачей и осуществляется только при помощи спец. приборов;
  • частичная потеря емкости. Для электролитических конденсаторов потеря емкости с годами практически неизбежна, однако это не всегда приводит к неисправности устройства (но может ухудшать его характеристики). Керамические, пленочные и прочие с твердым диэлектриком, как правило, более стабильны, но могут потерять емкость в результате механического повреждения;
  • слишком низкое сопротивление утечки (конденсатор «не держит» заряд). В основном это свойственно электролитическим конденсаторам. Хотя танталовые в этом плане очень хороши;
  • слишком большое эквивалентное последовательное сопротивление (ЕПС или ESR). Проблема по большей части касается «электролитов» и проявляется только при работе с высокочастотными или импульсными токами.

Существует масса способов как проверить конденсатор мультиметром на работоспособность. Пойдем по-порядку.

Содержание статьи:

Внешний осмотр

Иногда достаточно одного взгляда, чтобы определить неисправный конденсатор на плате. В таких случаях нет смысла проверять его какими-либо приборами.Конденсатор подлежит замене, если визуальный осмотр показал наличие:

  • даже незначительного вздутия, следов подтеков;
  • механических повреждений, вмятин;
  • трещин, сколов (актуально для керамики).

Конденсаторы, имеющие любой из указанных признаков, эксплуатировать НЕЛЬЗЯ.

Измерение емкости конденсатора мультиметром и специальными приборами

Некоторые мультиметры имеют функцию измерения емкости. Взять хотя бы эти распространенные модели: M890D, AM-1083, DT9205A, UT139C и т.д.Также в продаже есть цифровые измерители емкости, например, XC6013L или A6013L.

С помощью любого из этих приборов можно не только узнать точную емкость конденсатора, но и убедиться в отсутствии короткого замыкания между обкладками или внутреннего обрыва одного из выводов.

Некоторые производители даже уверяют, что их мультиметры способны проверить емкость конденсатора не выпаивая его с платы. Что, конечно же, противоречит здравому смыслу.

К сожалению, проверка конденсатора мультиметром не поможет определить такие наиважнейшие параметры, как ток утечки и эквивалентное последовательное сопротивление (ESR). Их измерить только с помощью специализированных тестеров. Например, с помощью весьма недорогого LC-метра.

Проверка на короткое замыкание

Способ №1: определение КЗ в режиме прозвонки

Как прозванивать конденсаторы мультиметром? Нужно включить мультиметр в режим прозвонки или измерения сопротивления и приложить щупы к выводам конденсатора.

В зависимости от емкости мультиметр либо сразу же покажет бесконечное сопротивление, либо через какое-то время (от нескольких секунд до десятков секунд).

Если же прибор постоянно пищит в режиме прозвонки (или показывает очень низкое сопротивление в режиме измерения сопротивления), то конденсатор можно смело выкидывать.

Способ №2: определение КЗ конденсатора с помощью светодиода и батарейки

Если нет мультиметра (и даже старой советской «цешки» нету), то можно попробовать подключить светодиод или лампочку к батарейке через исследуемый конденсатор.

Т.к. исправный конденсатор имеет ооочень большое сопротивление постоянному току, лампочка гореть не должна. Хотя, если емкость конденсатора достаточно большая, лампочка может вспыхнуть на короткое время (пока конденсатор не зарядится).

Если же светодиод горит постоянно, конденсатор 100% неисправен.

Если при проверке конденсатора наблюдается эффект постепенного роста сопротивления вплоть до бесконечности (ну или светодиод на какое-то время вспыхивает и гаснет) то конденсатор совершенно точно имеет какую-то емкость. Следовательно, проверку на обрыв можно не делать.

Способ №3: проверка конденсатора лампочкой на 220В

Подходит для высоковольтных неполярных конденсаторов (например, пусковые конденсаторы из стиральных машин, насосов, различных станков и т.п.).

Все что нужно сделать — просто подключить лампу накаливания небольшой мощности (25-40 Вт) через конденсатор. Полярность конденсатора не имеет значения:

Способ позволяет одним выстрелом убить двух зайцев: обнаружить КЗ, если оно есть, и убедиться в том, что конденсатор имеет ненулевую емкость (не находится в обрыве).

При исправном конденсаторе лампочка будет гореть в полнакала. Чем меньше емкость — тем тусклее будет гореть лампочка.

Если лампа горит в полную мощность (точно также как и без конденсатора), значит конденсатор «пробит» и подлежит замене. Если лампочка совсем не светится — внутри конденсатора обрыв.

Способ №3 очень наглядно продемонстрирован в этом видео:

Проверка на отсутствие внутреннего обрыва

Обрыв — распространенный дефект конденсатора, при котором один из его электродов теряет электрическое соединение с обкладкой и фактически превращается в короткий, ни с чем не соединенный (висящий в воздухе), проводник.

Чаще всего обрыв происходит из-за превышения рабочего напряжения конденсатора. Этим грешат не только электролитические конденсаторы, но и специальные помехоподавляющие конденсаторы типа Y (они, кстати говоря, специально так спроектированы, чтобы уходить в отрыв, а не в КЗ).

Конденсатор с внутренним обрывом внешне ничем не отличается от исправного, кроме случаев, когда ножку физически оторвали от корпуса 🙂

Разумеется, в случае отрыва одного из выводов от обкладки конденсатора, емкость такого конденсатора становится равной нулю. Поэтому суть проверки на обрыв состоит в том, чтобы уловить хоть малейшие признаки наличия емкости у проверяемого конденсатора.

Как это сделать? Есть три способа.

Способ №1: исключение обрыва через звуковой сигнал в режиме прозвонки

Включить мультиметр в режим прозвонки, прикоснуться щупами к выводам конденсатора и в этот момент мультиметр должен издать непродолжительный писк. Иногда звук настолько короткий (зависит от емкости конденсатора), что больше похож на щелчок и нужно очень постараться, чтобы его услышать.

Небольшой лайфхак: чтобы увеличить продолжительность звукового сигнала при прозвонке совсем маленьких конденсаторов, нужно предварительно зарядить их отрицательным напряжением, приложив щупы мультиметра в обратном порядке. Тогда при последующей прозвонке мультиметру сначала придется перезарядить конденсатор от какого-то отрицательного напряжения до нуля, и только потом — от нуля до момента отключения пищалки. На все это уйдет значительно больше времени, а значит сигнал будет звучать дольше и его проще будет расслышать.

Вот какой-то чувак, сам того не подозревая, применяет этот лайфхак на видео:

Из своей практике могу сказать, что с помощью уловки, описанной выше, мне удавалось уловить реакцию мультиметра на конденсатор емкостью всего лишь 0.1 мкФ (или 100 нФ)!

Способ №2: увеличение сопротивления постоянному току как признак отсутствия обрыва

Если предыдущий способ не помог и вообще не понятно, как проверить конденсатор тестером, то вот вам более чувствительный метод проверки.

Необходимо переключить мультиметр в режим измерения сопротивления. Выбрать максимально доступный предел измерения (20 или лучше 200 МОм). Приложить щупы к выводам конденсатора и наблюдать за показаниями мультиметра.

По мере заряда конденсатора от внутреннего источника мультиметра, его сопротивление будет постоянно расти до тех пор, пока не выйдет за пределы диапазона измерения. Если такой эффект наблюдается, значит обрыва нет.

Кстати говоря, может так оказаться, что рост сопротивления остановится на значении от единиц до пары десятков МОм — для конденсаторов с жидким электролитом (кроме танталовых) это абсолютно нормально. Для остальных конденсаторов сопротивление утечки должно быть больше, как минимум, на порядок.

При измерении таких высоких сопротивлений необходимо следить за тем, чтобы не касаться пальцами сразу обоих измерительных щупов. Иначе сопротивление кожи внесет свои коррективы и исказит все результаты.

С помощью измерения сопротивления на пределе 200 МОм мне удавалось однозначно определить отсутствие обрыва в конденсаторах емкостью всего 0.001 мкФ (или 1000 пФ).

Вот видео для наглядности:

Способ №3: измерение остаточного напряжения для исключения внутреннего обрыва

Это самый чувствительный способ, позволяющий убедиться в отсутствии обрыва конденсатора даже тогда, когда все предыдущие способы не помогли.

Берется мультиметр в режиме прозвонки или в режиме измерения сопротивления (не важно в каком диапазоне) и на пару секунд прикладываем щупы к выводам испытуемого конденсатора. В этот момент конденсатор зарядится от мультиметра до какого-то небольшого напряжения (обычно 2.8 В).

Затем мы быстро переключаем мультиметр в режим измерения постоянного напряжения на самом чувствительном диапазоне и, не мешкая слишком долго, снова прикладываем щупы к конденсатору, чтобы измерить на нем напряжение. Если у кондера есть хоть какая-нибудь вразумительная емкость, то мультиметр успеет показать напряжение, до которого был заряжен конденсатор.

Этим способом мне удавалось с помощью обычного цифрового мультиметра M890D отловить емкость вплоть до 470 пФ (0.00047 мкФ)! А это очень маленькая емкость.

Вообще говоря, это наиболее эффективный метод прозвонки конденсаторов. Таким способ можно проверять кондеры любой емкости — от малюсеньких до самых больших, а также любого типа — полярные, неполярные, электролитические, пленочные, керамические, оксидные, воздушные, металло-бумажные и т.д.

Правда, если конденсатор имеет совсем маленькую емкость, до 470 пФ, то, увы, проверить его на обрыв без специального прибора, вроде упомянутого ранее LC-метра, никак не получится.

Определение рабочего напряжения конденсатора

Строго говоря, если на конденсаторе нет маркировки и не известна схема, в которой он стоял, то узнать его рабочее напряжение неразрушающими методами НЕВОЗМОЖНО.

Однако, имея некоторый опыт, можно оооочень приблизительно прикинуть «на глазок» рабочее напряжение исходя из габаритов конденсатора. Естественно, чем больше размеры конденсатора и чем меньше при этом его емкость, тем на большее напряжение он расчитан.

Способ №1: определение рабочего напряжения через напряжения пробоя

Если имеется несколько одинаковых конденсаторов и одним из них не жалко пожертвовать, то можно определить напряжение пробоя, которое обычно раза в 2-3 выше рабочего напряжения.

Напряжение пробоя конденсатора измеряется следующим образом. Конденсатор подключается через токоограничительный резистор к регулируемому источнику напряжения, способного выдавать заведомо больше, чем напряжение пробоя. Напряжение на конденсаторе контроллируется вольтметром.

Затем напряжение плавно повышают до тех пор, пока не произойдет пробой (момент, когда напряжение на конденсаторе резко упадет до нуля).

За рабочее напряжение можно принять значение, в 2-3 раза меньше, чем напряжение пробоя. Но это такое… Вы можете иметь свое мнение на этот счет.

Внимание! Обязательно соблюдайте все меры предосторожности! При проверке конденсатора на пробой необходимо использовать защищенный стенд, а также индивидуальные средства защиты зрения.

Энергии заряженного конденсатора бывает достаточно, чтобы устроить небольшой ядерный взрыв прямо на рабочем столе. Вот, можно посмотреть, как это бывает:

А некоторые типы керамических конденсаторов при электрическом пробое способны разлетаться на очень мелкие, но твердые осколки, без труда пробивающие кожу (не говоря уже о глазах).

Способ №2: нахождение рабочего напряжения конденсатора через ток утечки

Этот способ узнать рабочее напряжение конденсатора подходит для алюминиевых электролитических конденсаторов (полярных и неполярных). А таких конденсаторов большинство.

Суть заключается в том, чтобы отловить момент, при котором его ток утечки начинает нелинейно возрастать. Для этого собираем простейшую схему:

и делаем замеры тока утечки при различных значениях приложенного напряжения (начиная с 5 вольт и далее). Напряжение следует повышать постепенно, одинаковыми порциями, записывая показания вольтметра и микроампераметра в таблицу.

У меня получилась такая табличка (моя чуйка подсказала мне, что это довольно высоковольтный конденсатор, так что я сразу начал прибавлять по 10В):

Напряжение на
конденсаторе, В
Ток утечки,
мкА
Прирост тока,
мкА
101.11.1
202.21.1
303.31.1
404.51.2
505.81.3
607.21.4
708.91.7
8011.02.1
9013.42.4
10016.02.6

Как только станет заметно, что одинаковый прирост напряжения каждый раз приводит к непропорционально бОльшему приросту тока утечки, эксперимент следует остановить, так как перед нами не стоит задача довести конденсатор до электрического пробоя.

Если из полученных значений построить график, то он будет иметь следующий вид:

Видно, что начиная с 50-60 вольт, график зависимости тока утечки от напряжения обретает явно выраженную нелинейность. А если принять во внимание стандартный ряд напряжений:

Стандартный ряд номинальных рабочих напряжений конденсаторов, В
6.3101620253240506380100125160200250315350400450500

то можно предположить, что для данного конденсатора рабочее напряжение составляет либо 50 либо 63 В.

Согласен, метод достаточно трудоемкий, но не сказать о нем было бы ошибкой.

Как измерить ток утечки конденсатора?

Чуть выше уже была описана методика измерения тока утечки. Хотелось бы только добавить, что Iут измеряется либо при максимальном рабочем напряжении конденсатора либо при таком напряжении, при котором конденсатор планируется использовать.

Также можно вычислить ток утечки конденсатора косвенным методом — через падение напряжения на заранее известном сопротивлении:

При проверке полярных конденсаторов на утечку необходимо соблюдать полярность их подключения. В противном случае будут получены некорректные результаты.

При измерении тока утечки электролитических конденсаторов после подачи напряжения очень важно выждать какое-то время (минут 5-10) для того, чтобы все электрохимические процессы завершились. Особенно это актуально для конденсаторов, которые в течение длительного времени были выведены из эксплуатации.

Вот видео с наглядной демонстрацией описанного метода измерения тока утечки конденсатора:

Определение емкости неизвестного конденсатора

Способ №1: измерение емкости специальными приборами

Самый просто способ — измерить емкость с помощью прибора, имеющего функцию измерения емкостей. Это и так понятно, и об этом уже говорилсь в начале статьи и тут нечего больше добавить.Если с приборами совсем туган, можно попробовать собрать простенький самодельный тестер. В интернете можно найти неплохие схемы (посложнее, попроще, совсем простая).

Ну или раскошелиться, наконец, на универсальный тестер, который измеряет емкость до 100000 мкФ, ESR, сопротивление, индуктивность, позволяет проверять диоды и измерять параметры транзисторов. Сколько раз он меня выручал!

Способ №2: измерение емкости двух последовательно включенных конденсаторов

Иногда бывает так, что имеется мультиметр с измерялкой емкости, но его предела не хватает. Обычно верхний порог мультиметров — это 20 или 200 мкФ, а нам нужно измерить емкость, например, в 1200 мкФ. Как тогда быть?

На помощь приходит формула емкости двух последовательно соединенных конденсаторов:Суть в том, что результирующая емкость Cрез двух последовательных кондеров будет всегда меньше емкости самого маленького из этих конденсаторов. Другими словами, если взять конденсатор на 20 мкФ, то какой бы большой емкостью не обладал бы второй конденсатор, результирующая емкость все равно будет меньше, чем 20 мкФ.

Таким образом, если предел измерения нашего мультиметра 20 мкФ, то неизвестный конденсатор нужно последовательно с конденсатором не более 20 мкФ.Остается только измерить общую емкость цепочки из двух последовательно включенных конденсаторов. Емкость неизвестного конденсатора рассчитывается по формуле:Давайте для примера рассчитаем емкость большого конденсатора Сх с фотографии выше. Для проведения измерения последовательно с этим конденсатором включен конденсатор С1 на 10.06 мкФ (он был предварительно измерен). Видно, что результирующая емкость составила Cрез = 9.97 мкФ.

Подставляем эти цифры в формулу и получаем:

Способ №3: измерение емкости через постоянную времени цепи

Как известно, постоянная времени RC-цепи зависит от величины сопротивления R и значения емкости Cх:Постоянная времени — это время, за которое напряжение на конденсаторе уменьшится в е раз (где е — это основание натурального логарифма, приблизительно равное 2,718).

Таким образом, если засечь за какое время разрядится конденсатор через известное сопротивление, рассчитать его емкость не составит труда.Для повышения точности измерения необходимо взять резистор с минимальным отклонением сопротивления. Думаю, 0.005% будет нормально =)Хотя можно взять обычный резистор с 5-10%-ой погрешностью и тупо измерить его реальное сопротивление мультиметром. Резистор желательно выбирать такой, чтобы время разряда конденсатора было более-менее вменяемым (секунд 10-30).

Вот какой-то чел очень хорошо все рассказал на видео:

Другие способы измерения емкости

Также можно очень приблизительно оценить емкость конденсатора через скорость роста его сопротивления постоянному току в режиме прозвонки. Об этом уже упоминалось, когда шла речь про проверку на обрыв.

Яркость свечения лампочки (см. метод поиска КЗ) также дает весьма приблизительную оценку емкости, но тем не менее такое способ имеет право на существование.

Существует также метод измерения емкости посредством измерения ее сопротивления переменному току. Примером реализации данного метода служит простейшая мостовая схема:Вращением ротора переменного конденсатора С2 добиваются баланса моста (балансировка определяется по минимальным показаниям вольтметра). Шкала заранее проградуирована в значениях емкости измеряемого конденсатора. Переключатель SA1 служит для переключения диапазона измерения. Замкнутое положение соответствует шкале 40…85 пФ. Конденсаторы С3 и С4 можно заменить одинаковыми резисторами.

Недостаток схемы — необходим генератор переменного напряжения, плюс требуется предварительная калиброка.

Можно ли проверить конденсатор мультиметром не выпаивая его с платы?

Не существует однозначного ответа на вопрос как проверить конденсатор мультиметром не выпаивая: все зависит о схемы, в которой стоит конденсатор.

Все дело в том, что принципиальные схемы, как правило, состоят из множества элементов, которые могут быть соединены с исследуемым конденсатором самым замысловатым образом.

Например, несколько конденсаторов могут быть соединены параллельно и тогда прибор покажет их суммарную емкость. Если при этом один из конденсаторов будет в обрыве, то это будет очень сложно заметить.

Или, например, довольно часто параллельно электролитическому конденсатору устанавливают керамический. В этом случае нет ни малейшей возможности прозвонить конденсатор мультиметром на плате и определить внутренний обрыв.В колебательных контурах, вообще, параллельно кондеру может оказаться катушка индуктивности. Тогда прозвонка конденсатора покажет короткое замыкание, хотя на самом деле его нет.

Вот пример, когда все пять конденсаторов покажут ложное КЗ:

Таким образом, проверка конденсаторов мультиметром без выпаивания вообще невозможна.

В схемах импульсных блоков питания очень часто встречаются контура, состоящие из вторичной обмотки трансформатора, диода и выпрямительного конденсатора. Так вот любая «прозвонка» конденсатора при пробитом диоде покажет КЗ. А на самом деле конденсатор может быть вполне исправен.Вообще-то, проверить электролитический конденсатор мультиметром не выпаивая можно, но это только для кондеров ощутимой емкости (>1 мкФ) и только проверить наличие емкости и отсутствие коротыша. Ни о каком измерении емкости и речи быть не может. К тому же, если прибор покажет КЗ, то выпаивать все-таки придется, так как коротить может что угодно на плате.

Мелкие кондеры проверяются только на отсутствие КЗ, обрыв и нулевую емкость таким образом не проверишь.

Вот очень правильный и понятный видос на эту тему:

Примеры выше (а также доходчивое видео) не оставляют никаких сомнений, что проверка конденсаторов не выпаивая из схемы — это фантастика.

Если какой-либо конденсатор вызывает сомнения, лучше сразу заменить его на заведомо исправный. Или хотя бы временно подпаять хороший конденсатор параллельно сомнительному, чтобы подтвердить или опровергнуть подозрения.

Как проверить конденсатор мультиметром на работоспособность

Как проверить конденсатор мультиметром на работоспособность – вопрос, возникающий у всех радиолюбителей и людей, которые любят заниматься паянием электрических схем разной сложности. Сделать это довольно просто, если знать некоторые тонкости.

Под тестером принято понимать стрелочные аппараты, работающие на аналоговом принципе. Мультиметр – это цифровой прибор, имеющие экран, где и отображается вся информация. На проверку можно отправить только конденсаторы, имеющие большую емкость, но узнать саму емкость невозможно, даже примерно. Если конденсатор рабочий, стрелка прибора вначале слегка отклонится, а потом начнет опускаться до бесконечности.

В статье подробны подробным образом рассмотрены все вопросы проверки конденсаторов на работоспособность. Бонусом служат ролик и подробная статься на эту тему.

Как проверить конденсатор с помощью приборов

Как проверить конденсатор с помощью приборов.

Как проверить конденсатор мультиметром

проверка конденсатора По сути ремонт любой радиоэлектронной аппаратуры сводится к поиску и замене неисправных деталей. И, возможно, вы удивитесь тому, насколько часто выходят из строя такие, казалось бы, простые компоненты как конденсаторы.

В то время как нежные диоды, чувствительные транзисторы и сложные микросхемы остаются целыми и невредимыми. Типичные неисправности конденсаторов:

  • КЗ между обкладками. Как правило, это следствие механического повреждения, перегрева или превышения рабочего напряжения (пробой). Самый простой случай, т.к. легко выявляется любым мультиметром в режиме прозвонки;
  • внутренний обрыв с полной потерей емкости (вот почему нельзя коротить отвертками). В случае с конденсаторами большой емкости этот дефект достаточно просто диагностируется. Выявление обрыва у мелких кондеров (менее 500 пФ) является довольно трудоемкой задачей и осуществляется только при помощи спец. приборов;
  • частичная потеря емкости. Для электролитических конденсаторов потеря емкости с годами практически неизбежна, однако это не всегда приводит к неисправности устройства (но может ухудшать его характеристики). Керамические, пленочные и прочие с твердым диэлектриком, как правило, более стабильны, но могут потерять емкость в результате механического повреждения;
  • слишком низкое сопротивление утечки (конденсатор “не держит” заряд). В основном это свойственно электролитическим конденсаторам. Хотя танталовые в этом плане очень хороши;
  • слишком большое эквивалентное последовательное сопротивление (ЕПС или ESR). Проблема по большей части касается “электролитов” и проявляется только при работе с высокочастотными или импульсными токами.

Существует масса способов как проверить конденсатор мультиметром на работоспособность.

Проверка конденсатора мультиметром

Как проверить конденсатор с помощью приборов Для начала давайте разберемся, что это за устройство, из чего он состоит, и какие виды конденсаторов существуют. Конденсатор представляет собой устройство, которое способно накапливать электрический заряд. Внутри он состоит из двух металлических пластин параллельных между собой. Между пластинами расположен диэлектрик (прокладка). Чем больше пластины, тем соответственно больший заряд они могут накапливать.

Существует два вида конденсаторов:

  1. 1) полярные;
  2. 2) неполярные.

Как можно догадаться по названию полярные имеют полярность (плюс и минус) и подключаются к электронным схемам со строгим соблюдением полярность: плюс к плюсу, минус к минусу. В противном случае конденсатор может выйти из строя. Все полярные конденсаторы – электролитические. Бывают как с твердым, так и с жидким электролитом. Емкость колеблется в диапазоне 0.1 ÷ 100000 мкФ. Неполярные конденсаторы без разницы как подключать или впаивать в схему, у них нет плюса или минуса. В неполярных кондерах диэлектрическим материалом является бумага, керамика, слюда, стекло.

Их емкость не очень большая колеблется в приделах от несколько пФ (пикофарад) до единиц мкФ (микрофарад). Друзья некоторые из Вас могут задаться вопросом, зачем эта ненужная информация? Какая разница полярный-неполярный? Все это влияет на методику измерений. И перед тем как проверить конденсатор мультиметром нужно понимать, какой именно тип устройства перед нами находится.

Как проверить конденсатор с помощью приборов

Прежде всего, выполняется внешний осмотр конденсатора на предмет трещин и вздутия. Нередко причиной неисправности является внутренние повреждения электролитов, что в свою очередь приводит к увеличению давления внутри корпуса, и как следствие вздутие оболочки. Если конденсатор с виду цел, то без специальных приборов трудно сказать работоспособный он или нет. Поэтому в этом случае выполняется проверка конденсатора мультиметром. Этот простой прибор позволит нам определить емкость конденсатора и наличие обрывов внутри.

Различные конденсаторы

Различные конденсаторы.

Перед тем, как приступить к проверке, нужно определиться какого рода конденсатор находится перед вами: полярный или неполярный. Помните, выше я писал, что это будет важно при измерениях. Так вот при выполнении проверки полярных конденсаторов нужно соблюдать полярность и подключать щупы к ним соответственно: плюсовой к ножке «+», а минусовой к ножке «-». При проверке неполярных «кондеров» полярность в подключении соблюдать не нужно, однако здесь есть одна особенность на которую нужно обращать внимание. Для проверки целостности кондера переключатель мультиметра нужно выставить на отметку 2 МОм.

Как проверить конденсатор при помощи мультиметра

Если будет меньше, то на дисплее будет отображаться – «1» (единица), можно ложно подумать что конденсатор неисправен. Переключатель мультиметра устанавливаем в секторе измерения сопротивления (режим омметра). Режим сопротивления даст нам понять есть ли внутри кондера обрыв или короткое замыкание. Для этого выставляем переключатель на отметку 2 МОм и касаемся щупами выводов конденсатора. Как только щупы будут подключены, на дисплее можно увидеть стремительно растущее сопротивление.

Почему так происходит

Проверка конденсатора Почему на дисплее можно наблюдать «плавающие значения сопротивления»? Все дело в том, что при касании щупами выводов к конденсатору прикладывается постоянное напряжение (батарейка прибора) – он начинает заряжаться. Чем дольше мы держим щупы, тем больше конденсатор заряжается, и сопротивление плавно увеличивается. Скорость заряда напрямую зависит от емкости. Спустя время конденсатор зарядится и его сопротивление будет равно «бесконечности», а на дисплее мультиметра мы увидим «1». Это показатель того что конденсатор исправен.

Не все удается передать фотографиями, но для экземпляра 5.6 мкФ сопротивление стартует с 200 кОм и плавно растет, пока не перевалит отметку в 2 МОм. Длится весь процесс, примерно 10 сек. Со вторым конденсатором номиналом 3.3 мкФ происходит все аналогично. Начинает заряжаться, сопротивление растет, как только показания превысят отметку 2 МОм на дисплее можно увидеть «1» что соответствует «бесконечности». По времени процесс длится меньше, примерно 5 сек.

Материал по теме: Как проверить варистор мультиметром.

Измерение емкости конденсатора мультиметром и специальными приборами

Некоторые мультиметры имеют функцию измерения емкости. Взять хотя бы эти распространенные модели: M890D, AM-1083, DT9205A, UT139C и т.д.Также в продаже есть цифровые измерители емкости, например, XC6013L или A6013L. С помощью любого из этих приборов можно не только узнать точную емкость конденсатора, но и убедиться в отсутствии короткого замыкания между обкладками или внутреннего обрыва одного из выводов.

Некоторые производители даже уверяют, что их мультиметры способны проверить емкость конденсатора не выпаивая его с платы. Что, конечно же, противоречит здравому смыслу.

Как проверить конденсатор при помощи мультиметра

К сожалению, проверка конденсатора мультиметром не поможет определить такие наиважнейшие параметры, как ток утечки и эквивалентное последовательное сопротивление (ESR). Их измерить только с помощью специализированных тестеров. Например, с помощью весьма недорогого LC-метра.

Измерение емкости конденсатора мультиметром и специальными приборами

Измерение емкости конденсатора мультиметром и специальными приборами.

Проверка на короткое замыкание

Есть три способа сделать это.

Способ №1: определение КЗ в режиме прозвонки

Как прозванивать конденсаторы мультиметром? Нужно включить мультиметр в режим прозвонки или измерения сопротивления и приложить щупы к выводам конденсатора. В зависимости от емкости мультиметр либо сразу же покажет бесконечное сопротивление, либо через какое-то время (от нескольких секунд до десятков секунд). Если же прибор постоянно пищит в режиме прозвонки (или показывает очень низкое сопротивление в режиме измерения сопротивления), то конденсатор можно смело выкидывать.

Интересный материал для ознакомления: что такое вариасторы.

Способ №2: определение КЗ конденсатора с помощью светодиода и батарейки

Проверка на отсутствие внутреннего обрыва Если нет мультиметра (и даже старой советской “цешки” нету), то можно попробовать подключить светодиод или лампочку к батарейке через исследуемый конденсатор. Т.к. исправный конденсатор имеет ооочень большое сопротивление постоянному току, лампочка гореть не должна.

Хотя, если емкость конденсатора достаточно большая, лампочка может вспыхнуть на короткое время (пока конденсатор не зарядится). Если же светодиод горит постоянно, конденсатор 100% неисправен. Если при проверке конденсатора наблюдается эффект постепенного роста сопротивления вплоть до бесконечности (ну или светодиод на какое-то время вспыхивает и гаснет) то конденсатор совершенно точно имеет какую-то емкость.

Следовательно, проверку на обрыв можно не делать.

Способ №3: проверка конденсатора лампочкой на 220В

Подходит для высоковольтных неполярных конденсаторов (например, пусковые конденсаторы из стиральных машин, насосов, различных станков и т.п.). Все что нужно сделать – просто подключить лампу накаливания небольшой мощности (25-40 Вт) через конденсатор.

Проверка на отсутствие внутреннего обрыва

Обрыв – распространенный дефект конденсатора, при котором один из его электродов теряет электрическое соединение с обкладкой и фактически превращается в короткий, ни с чем не соединенный (висящий в воздухе), проводник. Чаще всего обрыв происходит из-за превышения рабочего напряжения конденсатора. Этим грешат не только электролитические конденсаторы, но и специальные помехоподавляющие конденсаторы типа Y (они, кстати говоря, специально так спроектированы, чтобы уходить в отрыв, а не в КЗ).

Конденсатор с внутренним обрывом внешне ничем не отличается от исправного, кроме случаев, когда ножку физически оторвали от корпуса. Разумеется, в случае отрыва одного из выводов от обкладки конденсатора, емкость такого конденсатора становится равной нулю. Поэтому суть проверки на обрыв состоит в том, чтобы уловить хоть малейшие признаки наличия емкости у проверяемого конденсатора.

Характеристики надежности конденсаторов

Таблица характеристик надежности конденсаторов.

Способ №1: исключение обрыва через звуковой сигнал в режиме прозвонки

конденсаторы

Включить мультиметр в режим прозвонки, прикоснуться щупами к выводам конденсатора и в этот момент мультиметр должен издать непродолжительный писк. Иногда звук настолько короткий (зависит от емкости конденсатора), что больше похож на щелчок и нужно очень постараться, чтобы его услышать. Небольшой лайфхак: чтобы увеличить продолжительность звукового сигнала при прозвонке совсем маленьких конденсаторов, нужно предварительно зарядить их отрицательным напряжением, приложив щупы мультиметра в обратном порядке.

Тогда при последующей прозвонке мультиметру сначала придется перезарядить конденсатор от какого-то отрицательного напряжения до нуля, и только потом – от нуля до момента отключения пищалки. На все это уйдет значительно больше времени, а значит сигнал будет звучать дольше и его проще будет расслышать. Из своей практике могу сказать, что с помощью уловки, описанной выше, мне удавалось уловить реакцию мультиметра на конденсатор емкостью всего лишь 0.1 мкФ (или 100 нФ)!

Способ №2: увеличение сопротивления постоянному току как признак отсутствия обрыва

конденсатор Если предыдущий способ не помог и вообще не понятно, как проверить конденсатор тестером, то вот вам более чувствительный метод проверки. Необходимо переключить мультиметр в режим измерения сопротивления. Выбрать максимально доступный предел измерения (20 или лучше 200 МОм). Приложить щупы к выводам конденсатора и наблюдать за показаниями мультиметра.

По мере заряда конденсатора от внутреннего источника мультиметра, его сопротивление будет постоянно расти до тех пор, пока не выйдет за пределы диапазона измерения. Если такой эффект наблюдается, значит обрыва нет. Кстати говоря, может так оказаться, что рост сопротивления остановится на значении от единиц до пары десятков МОм – для конденсаторов с жидким электролитом (кроме танталовых) это абсолютно нормально. Для остальных конденсаторов сопротивление утечки должно быть больше, как минимум, на порядок.

При измерении таких высоких сопротивлений необходимо следить за тем, чтобы не касаться пальцами сразу обоих измерительных щупов. Иначе сопротивление кожи внесет свои коррективы и исказит все результаты. С помощью измерения сопротивления на пределе 200 МОм мне удавалось однозначно определить отсутствие обрыва в конденсаторах емкостью всего 0.001 мкФ (или 1000 пФ).

Способ №3: измерение остаточного напряжения для исключения внутреннего обрыва

конденсаторы Это самый чувствительный способ, позволяющий убедиться в отсутствии обрыва конденсатора даже тогда, когда все предыдущие способы не помогли. Берется мультиметр в режиме прозвонки или в режиме измерения сопротивления (не важно в каком диапазоне) и на пару секунд прикладываем щупы к выводам испытуемого конденсатора. В этот момент конденсатор зарядится от мультиметра до какого-то небольшого напряжения (обычно 2.8 В).

Затем мы быстро переключаем мультиметр в режим измерения постоянного напряжения на самом чувствительном диапазоне и, не мешкая слишком долго, снова прикладываем щупы к конденсатору, чтобы измерить на нем напряжение. Если у кондера есть хоть какая-нибудь вразумительная емкость, то мультиметр успеет показать напряжение, до которого был заряжен конденсатор. Этим способом мне удавалось с помощью обычного цифрового мультиметра M890D отловить емкость вплоть до 470 пФ (0.00047 мкФ)!

Это очень маленькая емкость. Вообще говоря, это наиболее эффективный метод прозвонки конденсаторов. Таким способ можно проверять кондеры любой емкости – от малюсеньких до самых больших, а также любого типа – полярные, неполярные, электролитические, пленочные, керамические, оксидные, воздушные, металло-бумажные и т.д. Правда, если конденсатор имеет совсем маленькую емкость, до 470 пФ, то, увы, проверить его на обрыв без специального прибора, вроде упомянутого ранее LC-метра, никак не получится.

Более подробно о проверке конденсаторов можно узнать  прочитав статью проверка конденсаторов  Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.electro-shema.ru

www.katod-anod.ru

www.elektt.blogspot.com

www.electricvdome.ru

 

Предыдущая

ПрактикаКак проверить трансформатор при помощи мультиметра

Следующая

ПрактикаКак проверить дроссель при помощи мультиметра

Как проверить конденсатор мультиметром в домашних условиях, пошаговая инструкция

Приветствую вас на своем блоге, друзья! После публикации статей про  мультиметры   появилась необходимость подробнее рассказать о том, как проверять конденсаторы . Известно, что конденсатор —  это распространенная деталь в любой  электронной конструкции, но в отличие от сопротивлений, диодов  или транзисторов  проверка обычным мультиметром вызывает много вопросов. Сегодня в выпуске:

Мастера и радиолюбители знают, что электронные детальки сегодня становятся все меньше и меньше в размерах. К тому же, маркировка на них не всегда видна, и узнать емкость по маркировке становиться довольно затруднительно.

Среди вороха запасных деталюшек,  нужно найти нужную, а  если это SMD деталь — по внешнему виду уже бывает трудно понять, что у тебя сейчас перед глазами. Слишком разнообразны  стали электронные устройства и компоненты их наполняющие.

Сразу оговоримся — обычные тестеры не дают исчерпывающей информации о конденсаторе. Здесь нужен мультиметр в котором есть соответствующая функция. Или универсальныый прибор, который иземеряет  и определяет большинство распростроненных деталей. Есть отельный класс  приборов, которые меряют только емкости. Они точны, но дороги. Мы сегодня познакомимся с мультиметром в котором есть функция проверки конденсаторов и унивесальным елф метром, который подходит   и для проверки конденсаторов

Как проверить конденсатор цифровым тестером на пробой

Начнем с самого простого. Пробитый конденсатор образуется, если на него подали слишком большое напряжение. Для начала проводим  визуальный осмотр. Все «пробитые» конденсаторы имеют на корпусе следы  воздействия излишней силы тока — пластмассовые корпус — оплавлен:

На металлическом корпусе — так же дыры или ожоги:

На пленочном конденсаторе так же можно безошибочно определить пробой. А вот SMD- кондесатор проще рассматривать под лупой, а иногда и под микроскопом:

В случае, когда не удается визуально определить пробит конденсатор или нет — на помощь приходит  обычный мультиметр.  Здесь нужно перевести его в режим измерения сопротивления. Природа конденсатора такова, что если он исправен — его сопротивление будет бесконечным, прибор покажет единицу.  Поэтому переводим его в самый максимальный режим (или в режим проверки диодов) и промеряем. По мере того как конденсатор будет заряжаться сопротивление будет расти, пока не дойдет до единицы:

 

При измерении не касайтесь пальцами контактов конденсатора. Наше тело — носитель электричества, конденсатор это почувствует  и измерения будут уже не точными и не такими быстрыми. Лучше всего для проверки деталей  использовать щупы  для мультиметра с зажимами типа «крокодил».

Если конденсатор пробит, то он будет вести себя как обычный электрический провод. Сопротивление его не  будет бесконечным, а если переключить мультиметр в режим прозвонки , то иногда такой конденсатор может даже  и «зазвенеть».

Еще одной неисправностью конденсатора, которая фиксируется визуально является вздутие корпуса. Эта особенность присуща так называемым электролитическим конденсаторам. Они имеют полярные контакты для подключения и внутри  есть электролит. Со временем (а так же при частых перегреавах) электролит начинает испаряться. Корпуса электролитических конденсаторов делают герметичными. Пары электролита сначала раздувают корпус, а потом уходят постепенно через образовавшиеся щели. Конденсатор теряет емкость, «высыхает» и  перестает обеспечивать заданные характеристики.

Как проверить конденсатор мультиметром пошаговая инструкция

На исправность конденсаторы проверить легко. У меня мультиметр модели Mastech MS8260G, у него есть функция измерения  емкости конденсаторов. Правда не всех, у этого прибора ограниченный диапазон измерения емкости.  Но некоторые конденсаторы он меряет. Если у Вас есть такой мультиметр, то по маркировке определите его емкость и промеряйте далее конденсатор  мультиметром.

Если мультиметр показывает емкость такую же (или с отклонением не более 30 %) от той, какая указана на корпусе, то он исправен. Если проверяете полярный электролитический конденсатор, то при измерении нужно соблюдать полярность.

При проверке конденсаторов в высоковольтных устройствах (блоках питания) соблюдайте осторожность. Измерять нужно  только полностью разряженный конденсатор. Разрядить его можно замкнув его контакты отверткой, а в отдельных случаях через резистор, чтобы исключить образование искры. Впаивать конденсатор так же нужно полностью разряженным.

Если у Вас стрелочный прибор, то проверяем конденсатор  так. Переключаем прибор в режим измерения сопротивления. Подсоединив контакты конденсатора к мультиметру, смотрим на поведение стрелки прибора. Желательно под рукой иметь заведомо исправный конденсатор такой же емкости в качестве эталона .Сравнивая поведение стрелки с эталоном получаем результат:

Еще хотелось бы сказать пару слов о другом замечательном приборе, который идеально подходит для определения исправности большинства конденсаторов. Этот прибор является по сути определителем элементов. Это особенно актуально в наше время, когда по внешнему виду уже бывает трудно определить что за деталь в руках.

Прибор этот недорог, но определяет емкости конденсаторов, их ESR, исправность диодов, транзисторов, катушек, тиристоров, стабилизаторов. И резисторов. Множества резисторов. Есть у этого прибора и площадка для проверки SMD элементов.

Работает прибор от батареи типа «Крона». Площадка в которую вставляется деталь зажимается рычажком, который обеспечивает надежный контакт. Я слегка доработал прибор. Во-первых зажим у меня начал изнашиваться — я уже проверил много выпаянных элементов. Требуются длинные выводы, а у выпаянных деталей выводы уже обрезаны, короткие.

Поэтому я купил несколько  разноцветных маленьких зажимов типа «крокодил», припаял их на провода, а провода к контактам с обратной стороны зажима на приборе. Стало удобнее проверять детали,  я так раскидал целую коробку выпаянных сопротивлений, диодов, конденсаторов по номиналам. Думаю даже подпаять туда пару щупов — как у обычного мультиметра. А зажим использовать стал иногда — для проверки новых купленных деталей.

Во — вторых пока я проверял детали батарейка подсела. Поэтому я решил и здесь ввести усовершенствования. Не выпаивая разъема для «Кроны» я на те же места подпаял блок питания от какого то приборчика напряжением 9 в и 0,5 А. Можно было приделать и штекер, я его не стал искать, припаял напрямую, а чтобы провода не болтались, использовал стяжки и термоклей:

В — третьих прибор выглядел после распаковки посылки очень хрупким. То ли экономят китайцы, то ли не заморачиваются особо на мелочах. Есть сейчас версии этого прибора в корпусе, но люди все равно дорабатывают.

И я  поместил его на пластмассовый корпус на саморезы — благо в плате прибора оказались под них отверстия. Осталось еще придумать прозрачную крышку на дисплей,   но пока не подобрал подходящую. В итоге у меня получился вот такой девайс. На видео продемонстрирую его возможности по проверке конденсаторов:

Как проверить конденсатор мультиметром не выпаивая, на плате

Честно говоря желательно  все же выпаивать детали. Если схема простая, можно попробовать перерезать контактные дорожки скальпелем — те которые ведут к конденсатору, около его ножек.

Промеряем его емкость как обычно, потом  паяльником залуживаем дорожки, порезы заполняются оловом, дорожка восстановлена. Я  так проверил  электролитический кондер на плате моим  универсальным тестером, благо тут полярность не  нужно соблюдать, что удобно:

Еще один способ проверки конденсаторов на плате это — пропайка или прогрев. Некоторые неисправные электролитические конденсаторы  начинают снова работать если их контакты хорошенько пропаять. Сам конденсатор прогревается при этом, после этого устройство начинает работать.  Если такое случилось, нужно все равно выпаять этот конденсатор и заменить на новый.

Если есть схема устройства на которой указаны напряжения или  в опорных точках — то это самый правильный вариант проверки. Сняв показания с этих точек и сверив их с теми что на схеме по цепочке можем проверить элементы схемы.  А на платах различных устройств так же есть контрольные точки,  по которым мастер и «вычисляет» неисправные компоненты:

Для получения исчерпывающих характеристик  снова подключаем наш универсальный прибор. У конденсатора есть такая важная характеристика — его эквивалентное последовательное сопротивление (ESR). Не будем сегодня углубляться в эту тему, скажу лишь, что наш прибор прекрасно «видит» эту характеристику.

Если величина ESR   превышает 5 ом, то даже при отсутствии внешних признаков (вздутие, пробой) такой конденсатор нужно выпаивать и  менять на новый. Опять же для чистоты эксперимента можно промерять сначала исправный конденсатор и взять его характеристики как эталонные.

Важно! При снятии характеристик нужно помнить что  полученная ESR  (так же как и емкость) зависит от того, как соединены конденсаторы между собой, последовательно или параллельно.  При измерении будут погрешности ввиду того, что  током от прибора будут запитываться и другие элементы схемы.

Проверяем конденсатор мультиметром на работоспособность на двигателе

Для автомобилистов так же будет интересно узнать, как проверить подозрительный кондёр. Ввиду того, что генератор вырабатывает ток, в пространство генерируются помехи. Для подавления помех на генератор (а так же  и на трамблеры) ставят конденсаторы. Искры получаются не такими злыми, помех меньше. Со временем конденсатор может выйти из строя.  Смотрим видео, как  этот конденсатор можно заменить другим.

Вот и все на сегодня. Удачи вам, до новых встреч!

Автор публикации

не в сети 2 дня

admin

0 Комментарии: 59Публикации: 343Регистрация: 04-09-2015

как определить неисправность конденсатор на трамблере.признаки какие?

Снять, прозвонить стрелочным омметром. Меняя полярность. На исправном при смене полярности стрелка должна отклониться кратковременно, так как происходит разряд.

Тестером проверить за 3 секунды

1.Конденсатор пробит: машина тупо не заводится, нет искры. 2.В конденсаторе обрыв: контакты прерывателя быстро обгорают. Машина плохо заводится, троит не разгоняется. Слабая искра

вобще я определяю на искру когда исправный то искра пробивается уже при 5 мм от выспровода до корпуса и она синия яркая с харктерным треском если меньше то ему обычно пиз… а при условии что контакты читсые с зазором и неподгоревшие, приборами не пользуюсь уже давно а так омметр в помощь

Конденсатор включается параллельно с прерываетелем распределителя зажигания (контактного) , предназначен для гашения искрового разряда (между контактами прерывателя) , возникающего при размыкании контактов. Если конденсатор пробит — искры не будет, если емкость по каким-то причинам уменьшилась — при размыкании контактов будет проскакивать искра, это легко понять по их состоянию, искра в зазоре свечи будет значительно слабее.

при неисправном конденсаторе происходит потеря мощности искры на свечах со всеми характерными признаками- неустойчивые обороты двигателя, хлопки из глушителя при потере тяги и иногда невозможность завести двигатель. Все эти симптомы так же соответсвуют и плохому состоянию контактов, и утечке (пробое) высокого напряжения (например в крышке трамблёра между центральным и боковыми контактами) . Для экспресс проверки можно при работающем двигателе отсоединить конденсатор и, если изменения будут ощутимы, то конденсатор исправен

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *