Электрохимическая защита: Электрохимическая защита

Содержание

Электрохимическая защита — принцип действия

  • Вы здесь:  
  • Защитные краски
  • Статьи и новости
  • Статьи
  • Электрохимическая защита

Принцип действия электрохимической защиты заключается в катодной поляризации металлической конструкции до уровня «защитного» потенциала, под которым понимается потенциал наиболее анодных участков. При этом на защищаемой поверхности будут протекать только катодные процессы.

Механизм электрохимической зашиты может быть упрощенно представлен следующим образом.

Металл, погруженный в электролит, представляет собой многоэлектронную систему, состоящую из множества пространственно разделенных и электрически замкнутых между собой анодных и катодных участков (рис. 1.1,а). Это объясняется тем, что металл имеет электрохимически гетерогенную структуру, обусловленную химической природой металла, состоянием его поверхности, различными внешними воздействиями. Схематически эту поверхность можно представить (рис.1.1,б) в виде одного общего анода и одного общего катода, соединенных электрически. Коррозия происходит вследствие ионизации металла на анодном участке.

Если к погруженному в электролит металлу присоединить другой металл с более отрицательным потенциалом, чем потенциал анодной реакции, то вследствие катодной поляризации потенциалы анодных и катодных участков защищаемого металла выравниваются и металл становится общим катодом. В этой новой гальванической паре растворяется присоединенный металл с низким электродным потенциалом, т.

е. новый анод, при этом исключаются условия для перехода ионов защищаемого металла в раствор и коррозионный процесс прекращается (рис.1.1,в). Эта принципиальная схема катодной зашиты с расходуемыми анодами. По такой схеме работают и составы для холодного цинкования.

Электрический ток, необходимый для защиты, может быть получен не только от работы гальванической пары, но и от внешнего источника тока. Защищаемая металлоконструкция присоединяется в этом случае к отрицательному полюсу источника постоянного тока, а к положительному полюсу присоединяется анод, изготовленный, как правило, из малорас творимого материала (рис.1.1,г). Такая защита называется катодной защитой наложенным током.

При использовании электрохимической катодной защиты двух указанных видов (с расходуемыми анодами и наложенным током) достигается эффективная защита, как от общей коррозии, так и специфических видов коррозионных разрушений (коррозионное растрескивание, контактная, питтинговая, межкристаллитная, селективная и др.

).

Критерием электрохимической защиты является потенциал металла или величина смещения потенциала от его стационарного значения. Эти величины позволяют судить о скорости коррозии и степени защиты. Существуют минимальные и максимальные критерии защиты. Под минимальными понимают минимально допустимые значения потенциала или смещения потенциала, при которых коррозия прекращается или уменьшается до допустимых пределов. Максимальные критерии защиты вводятся для того, чтобы избежать водородного охрупчивания высокопрочных металлов, перезащиты алюминиевых сплавов, разрушения лакокрасочных покрытий при выделении газообразного водорода и других, негативных последствий.

На рис.1.1 и 1.2 показаны зависимости скорости коррозии в морской воде углеродистой стали и алюминиевого сплава от величины потенциала. На рис. 1.2 видно резкое усиление коррозии алюминиевого сплава вследствие разрушения оксидной пленки при повышении рН вследствие катодной поляризации. Оптимальная величина защитного смещения потенциала в морской воде составляет для корпусных углеродистых сталей 150-200 мВ, для алюминиевых сплавов 200-400 мВ зависимости от химического состава сплава.

технологических трубопроводов, резервуаров, сосудов, свай, причалов, мостов и многого другого — электронный каталог продукции,разработка мобильных приложений,АОС,автоматизированные обучающие системы,семинары по нефтегазовой тематике,разработка СТУ,СТУ

Метод электрохимической защиты (ЭХЗ) от коррозии уже многие годы применяется инженерами для продления срока службы различных металлических устройств и сооружений. Однако так повелось, что наиболее широко известны технические решения по использованию ЭХЗ для противокоррозионной защиты больших металлоемких конструкций и сооружений, таких как подземные трубопроводы в нефтегазовой промышленности и в сфере ЖКХ или большие стальные резервуары, хотя принцип работы ЭХЗ универсален, и может быть успешно использован практически везде, где есть контакт металла и агрессивного электролита. В этой статье мы бы хотели дать, безусловно, очень краткий обзор других возможностей применения электрохимзащиты вокруг нас — в индустриальной, общественной и даже приватной сфере жизни современного человека.

Электрохимическая защита основана на управлении токами электрохимической коррозии, всегда возникающими при контакте любого металлического сооружения и электролита. С помощью ЭХЗ анодная разрушающаяся зона переносится с защищаемого объекта либо на специальное анодное заземление (при катодной защите), либо на отдельное изделие из более активного металла (при протекторной защите). Более подробно о физико-химических принципах катодной и протекторной защиты от коррозии можно прочитать 

здесь. Главное, что следует понимать при принятии решения о применении ЭХЗ — это то, что необходим обязательный контакт защищаемого объекта/системы объектов и внешнего анода (анодного заземления или протектора), как посредством проводника первого рода (металлического кабеля или прямого металлического контакта), так и посредством проводника второго рода (электролита). Электрическая цепь «сооружение — кабель — анод — электролит» обязательно должна замкнуться, иначе защитного тока в системе просто не возникнет. Простой пример — трубопровод или свая, выходящая из земли на поверхность. ЭХЗ будет работать только на подземной части. Однако есть несколько примеров, когда, на первый взгляд, это правило не работает. Например, постоянный контакт сооружения и электролита не обеспечивается в зонах переменного смачивания, таких как приливно-отливная зона свай на морских пирсах и причалах, зона волнового смачивания аналогичных сооружений пресноводных водоемов и т.д. В этих случаях приходится применять довольно хитрые схемы ЭХЗ, работающие только в моменты увлажнения коррозионно-опасных зон. Но как, например, организовать ЭХЗ от атмосферной коррозии металлического сооружения во влажном морском или промышленном воздухе? Оказывается и это возможно! Но начнем мы с более простых случаев.

Простой и очевидный пример объекта, подвергающегося электрохимической коррозии, которую можно замедлить с помощью ЭХЗ — это закопанное в землю или стоящее на земле любое металлическое сооружение: свая, резервуар, трубопровод любого назначения. Конечно, применять ЭХЗ везде и всюду нет никакой необходимости, однако если объект находится в грунте высокой коррозионной агрессивности (высокая влажность или засоленность — явные признаки такого грунта!), либо это промышленно значимый и плохо ремонтопригодный объект — ЭХЗ явно не будет лишней. Проект такой системы ЭХЗ не очень сложен. Например, если нужно защитить свайный фундамент, то достаточно станции катодной защиты малой мощности (может хватить и аккумулятора) и несколько правильно расположенных точечных анодов, или несколько небольших отрезков протяженного анода. Только нужно не забыть, что если сваи сделаны из труб, то они могут корродировать и изнутри, там, где ЭХЗ работать не будет. Одиночный, полностью закопанный резервуар также прекрасно защищается точечными анодами по периметру сооружения, а днище резервуара, стоящего на грунте — одним точечным анодом или изогнутым отрезком протяженного анода. Если есть возможность менять анодные заземления и сопротивление грунта мало, то вместо точечных анодов можно установить протекторные установки, срок эффективной работы которых обычно составляет 5-7 лет.

Теперь перейдем к не очень распространенному, но очень продуктивному способу электрохимической защиты от коррозии внутренней поверхности трубопроводов и резервуаров (сосудов) любой емкости и назначения, имеющих контакт с агрессивным водным электролитом (промышленными сточными водами или просто водой с высоким содержанием минеральных солей и кислорода). В этом случае применение ЭХЗ позволяет продлить срок безремонтной эксплуатации объекта в несколько раз. Более простой случай — внутренняя ЭХЗ резервуара, когда во внутреннем пространстве резервуара размещаются протекторы или анодные заземления. Эффективность ЭХЗ существенно повысится, если внутренняя поверхность резервуара будет дополнительно защищена изоляционным покрытием с хорошими диэлектрическими свойствами. Более сложное техническое решение применяется для внутренней электрохимической защиты трубопровода. В этом случае наиболее эффективно ввести во внутреннюю полость трубопровода протяженный гибкий анод (ПГА) из токопроводящей резины.

Длина такого анода обычно равна протяженности защищаемого участка трубопровода. Определенную техническую сложность вызывает укладка такого анода в уже эксплуатируемый трубопровод, хотя это также выполнимо на практике. Иногда для защиты участков ограниченной протяженности (5-30 м) достаточно установки во внутреннюю полость единичного точечного анода или протектора.

Внутренняя ЭХЗ трубопровода с применением протекторов

Такие системы внутренней электрохимзащиты чрезвычайно эффективны, даже когда ничего больше не помогает в принципе. Например, срок службы трубопроводов и различных очистительных установок —  очень коррозионно-агрессивных сточных вод промышленных предприятий — продлевается за счет внутренней ЭХЗ в 5-20 раз!

Следующий интересный случай применения систем ЭХЗ — это причальные сооружения, основания нефтегазовых платформ, опоры мостов или любые другие металлические конструкции в морской воде. Кстати, воды некоторых пресных водоемов в нашей «экологически чистой» стране, особенно вблизи крупных городов и промышленных предприятий, по коррозионной агрессивности приближаются к морской воде, поэтому все излагаемое ниже распространяется и на них с небольшими оговорками.

Коррозия сваи в зоне переменного смачивания и забрызгивания

Итак, металлические конструкции в морской воде подвергаются активной электрохимической коррозии, которая не может быть остановлена обычной покраской. По механизму коррозионного процесса на таких объектах обычно выделяют три основных зоны:

  • зона переменного смачивания и забрызгивания;
  • зона полного погружения в воду;
  • зона погружения сваи в грунт.

Наибольшую сложность при реализации систем электрохимической защиты представляет зона переменного смачивания, где нет постоянной электрической цепи «сооружение — электролит — анод». Для этих зон необходимы анодные заземления (протекторы) сетчатой или браслетной формы, обеспечивающие раздельную защиту локально увлажненных участков металлической конструкции. В самых сложных случаях имеет смысл обеспечить принудительное постоянное увлажнение зоны переменного смачивания конструкции, для постоянной работы средств ЭХЗ.

Электрохимзащита зоны полного смачивания металлических свай в водной среде может быть реализована в зависимости от конструкции разными способами, среди которых имеет смысл выделить следующие:

  • размещение нескольких подвесных точечных анодов, каждый из которых защищает ближайшие, окружающие его, сваи;
  • на более глубоких участках возможно использование протяженных гибких анодов, которые крепятся к тросам, закрепляемым концами на металлическом сооружении и дне водоема;
  • если нет возможности подвести электричество к защищаемому сооружению, тогда приемлемым методом электрохимической защиты будет использование больших глубинных протекторов с длительными расчетными сроками эксплуатации.

Магниевый протектор для электрохимзащиты морских сооружений

Теперь вернемся к анонсированной ЭХЗ от атмосферной коррозии металлического сооружения во влажном морском или промышленном воздухе. По своему механизму этот случай чем-то напоминает коррозию в зоне переменного смачивания — также большое количество локально-увлажненных участков, только еще более маленьких. В этом случае единственный способ обеспечить электрохимическую защиту всей поверхности защищаемого изделия — это обеспечить свою локальную систему ЭХЗ на каждом увлажненном участке. Эта цель достигается путем нанесения на поверхность изделия специального покрытия, содержащего частицы металла, обладающего защитными протекторными свойствами по отношению к стали. Обычно этим металлом является цинк. Таким образом, на каждом участке поверхности обеспечивается своя маленькая установка протекторной защиты, которая активируется при увлажнении.

В этой статье мы рассказали только о нескольких основных случаях применения электрохимической защиты разнообразных металлических конструкций. На самом деле можно привести гораздо больше таких примеров — ЭХЗ может использоваться повсеместно: кузова автомобилей, корпуса морских судов, бытовые нагреватели воды, морские трубопроводы и т.д. Иногда даже приходится обеспечивать электрохимзащиту железобетонных конструкций, но это настолько объемная тема, что требует отдельного обзора. Поэтому можно смело говорить, что пока наш век металла не сменился веком композиционных материалов, именно электрохимическая защита будет одной из наиболее важных и востребованных человечеством технологий.

comments powered by HyperComments

Катодная защита и системы катодной защиты

Последнее обновление: апрель 2023 г. Продление срока службы объектов и оборудования является первостепенной задачей для операторов. В конце концов, коррозия является основной причиной преждевременного выхода из строя металлических конструкций. Для многих решением является установка систем катодной защиты (CP) и их регулярное тестирование.

Эти системы для многолетней защиты от коррозии используются во многих гражданских и промышленных целях. Установка обычно происходит во время первоначального строительства, крупных расширений или обновлений.

Подробнее о:

  • Системы катодной защиты с гальваническим и импульсным током
  • Типы защищаемых конструкций
  • Пример КП для защиты трубопроводов от коррозии

Чтобы узнать больше, просмотрите обучающее видео ниже или ознакомьтесь с часто задаваемыми вопросами внизу этой страницы.

Перейти к часто задаваемым вопросам по катодной защите

Катодная гальваническая защита

Общие сведения о гальванических анодах

В гальванической системе используются аноды, подключенные к защищаемой конструкции в цепи. Естественный потенциал этих анодов более отрицателен, чем потенциал конструкции. При включении в цепь ток катодной защиты течет от анода (более отрицательного) к конструкции (менее отрицательного).

При правильном применении и с ограничениями гальванические аноды (также называемые протекторными анодами) могут защитить от коррозии подземные стальные, морские, внутренние и промышленные конструкции. Для работы гальванических систем CP не требуется внешний источник питания. Кроме того, эти аноды могут быть как долговечными, так и простыми в эксплуатации.

Доступны гальванические аноды с различными характеристиками, в том числе:

  • Аноды из чистого металла, такие как сплавы магния, цинка, алюминия и других сплавов
  • Тара для обратной засыпки для подземного использования
  • Внешние стальные хомуты для крепления к конструкциям
  • Несколько типов лент
  • Стержень и специальные формы

Катодная защита от импульсного тока

Разность потенциалов питания: Катодная защита от импульсного тока

Часто разность потенциалов между гальваническим анодом и стальной конструкцией недостаточна для срабатывания защиты. В этих случаях требуется, чтобы источник питания (выпрямитель) генерировал большую разность потенциалов, чтобы обеспечить протекание большего тока к защищаемой конструкции.

Эти активные системы катодной защиты подаваемого тока (ICCP) позволяют:

  • Аноды с более длительным сроком службы
  • Сильноточные системы
  • Большой контроль над системой
  • Простой мониторинг

Системы катодной защиты MATCOR

MATCOR обычно разрабатывает системы катодной защиты, которые защищают конструкции в течение 30 лет и более. Эти конструкции включают:

  • Наземные резервуары для хранения
  • Подземные трубопроводы
  • Арматурная сталь в бетонных конструкциях
  • Теплообменники
  • Морские сваи
  • Шпунтовые стены
  • Прочие металлические конструкции
Команда MATCOR готовится к установке системы катодной защиты с глубоким анодом для защиты трубопровода от коррозии.

Правильно спроектированные системы CP могут служить десятилетиями. Лучшие инженеры-проектировщики имеют опыт работы со структурами, которые они пытаются защитить. Они также знают этапы проектирования системы. Они:

  • Понимать условия окружающей среды
  • Оценка конструкции, требующей защиты
  • Варианты просмотра структуры или приложения
  • Выберите подходящую систему
  • Завершение проектирования, включая исчерпывающие спецификации и чертежи, с использованием новейшего инженерного программного обеспечения

Инженеры-конструкторы, обладающие необходимым опытом и знаниями о конструкции, требующей защиты от коррозии, должны выполнять все этапы проектирования системы.

Как это работает

Возможные изменения возникают естественным образом на незащищенном трубопроводе. Протекание тока и гальваническая коррозия трубопровода происходит при переходе от незначительного плюса к незначительному минусу. Применение CP, такого как линейный анод MATCOR, который проходит параллельно трубопроводу, заставляет ток сбрасываться с анода на трубопровод, предотвращая коррозию.

Трубопровод без CP

CP на трубопроводе

Часто задаваемые вопросы по катодной защите

Что такое катодная защита?

Катодная защита (CP) представляет собой электрохимический процесс, который замедляет или останавливает коррозионные токи путем приложения постоянного тока к металлу. При правильном применении CP останавливает коррозионную реакцию, защищая целостность металлических конструкций.

Как работает катодная защита?

Катодная защита работает путем помещения анода или анодов (внешних устройств) в электролит для создания цепи. Ток течет от анода через электролит к поверхности конструкции. Коррозия движется к аноду, чтобы остановить дальнейшую коррозию конструкции.

Какие существуют два типа систем катодной защиты?

Два основных типа: гальванические и токовые.

Что такое анод?

Анод является основным компонентом систем катодной защиты. Он функционирует как источник электронов и разряжает постоянный ток. Аноды более негативны по отношению к защищаемой конструкции.

Что такое катод?

Катодно-защищенная конструкция представляет собой катод в системе CP. Это место, где протекает ток после разряда с анода. Катод более положителен по отношению к защищаемой структуре. Когда электроны текут к катоду, он поляризуется или становится более электрически отрицательным.

Что такое электролит?

Электролит для целей катодной защиты представляет собой среду вокруг катода (защищаемая конструкция), обладающую достаточной электропроводностью, чтобы ток мог течь от анода к катоду. Анод и катод должны находиться в этой среде, чтобы ток катодной защиты протекал от анода к катоду. В некоторых случаях может быть несколько слоев или типов электролита, через которые может протекать ток.

Какие конструкции обычно требуют катодной защиты?

Заглубленные или затопленные конструкции требуют или могут получить пользу от надлежащего применения катодной защиты. Примеры активов, обычно защищаемых с использованием CP, включают: стальные нефтепроводы и газопроводы, стальные и ковкие чугунные водопроводные системы, днища резервуаров на надземных резервуарах большого диаметра, стояки пожарных гидрантов из ковкого чугуна и анкеры направляющего троса башни HVAC. Морские прибрежные сооружения, такие как стальные сваи и стенки из шпунта, корабли и другие крупные суда, являются дополнительными примерами активов с катодной защитой. Это некоторые распространенные приложения CP, но есть и множество других.

Что такое поляризация?

Когда ток катодной защиты течет от анода к защищаемой конструкции (катоду в цепи), электрический потенциал конструкции смещается в сторону более отрицательного электрического потенциала. Обычно измеряется в мВ. Мы называем это изменением потенциальной поляризации. Поляризация является мерой эффективности тока катодной защиты. Как только поляризация становится достаточной, мы считаем структуру катодно защищенной. Время, необходимое для полной поляризации структуры, может варьироваться. Это зависит от структуры и окружающей среды. В некоторых случаях для полной поляризации структуры могут потребоваться недели.

Что такое деполяризация?

Когда ток катодной защиты перестает течь от анода к защищаемой структуре, структура начинает деполяризоваться. Скорость деполяризации может варьироваться в зависимости от структуры и ее окружения.

Когда моя структура защищена катодом? Каковы критерии катодной защиты?

Согласно международным стандартам NACE существует два основных критерия, которые можно использовать для подтверждения катодной защиты конструкции. 100 мВ поляризации — первый критерий. Этот простой критерий подразумевает, что вы сначала измеряете потенциал конструкции без применения CP (собственный потенциал). Затем, после того как вы применяете катодную защиту на время, достаточное для достижения поляризации, снова измерьте потенциал. Если разность потенциалов больше 100 мВ, конструкция защищена. Это широко известно как критерий сдвига 100 мВ. Другим критерием является критерий отключения потенциала 850 мВ. В этом случае собственный потенциальный базовый уровень не требуется. Этот критерий просто требует, чтобы потенциал конструкции был более отрицательным, чем -850 мВ после учета всех источников тока (выключив их на мгновение).

Что такое «Мгновенное выключение»?

Мгновенное отключение — это процесс проведения измерений в тот момент, когда вы отключаете питание системы CP с подаваемым током. Когда у вас есть несколько источников тока, вы должны отключить их одновременно с помощью синхронизированных прерывателей. Целью выключения всех источников тока является устранение ИК-падений в цепи. Поскольку ток (I) течет по кабелю, существует сопротивление (R), которое ток должен преодолеть — это известно как падение напряжения, поскольку V = I x R.

При попытке измерить уровень поляризации важно устранить ИК-падения в цепи, которые являются результатом протекания тока, создающего эти ИК-падения. При мгновенном отключении тока показания ИК-падения немедленно уменьшаются до нуля, поскольку ток (I) теперь равен нулю. Это означает, что поляризация, которую вы измеряете сразу после отключения тока, является током истинной поляризации. Время имеет решающее значение, потому что при отключении тока структура немедленно деполяризуется. Поляризацион- ный потенциал начнет затухать. Целью мгновенных показаний поляризации при выключении является определение уровня поляризации при выключении питания и до начала процесса деполяризации.

Какие существуют типы анодов?

Аноды можно разделить на два основных типа – гальванические аноды (часто называемые протекторными анодами) и аноды с подаваемым током. Гальванические аноды используют естественный перепад напряжения между анодом и конструкцией для отвода тока от анода к конструкции. Аноды с током под давлением используют внешний источник питания для отвода тока от анода к конструкции.

Что такое гальванический или расходуемый анод?

Гальванические аноды в основном представляют собой металлические отливки, которые не используют внешний источник питания для подачи тока. Они полагаются на естественную разность потенциалов между двумя металлами для управления током катодной защиты. Существует три основных типа гальванических анодов. Магний является наиболее активным типом гальванического анода и используется в основном в почве. Цинковые гальванические аноды менее активны и обычно используются в почвах с низким удельным сопротивлением и солоноватой воде. Цинк также является основным металлом в оцинкованных изделиях. Наконец, в приложениях с морской водой обычно используется третий тип гальванических анодов — алюминий.

ПРИМЕЧАНИЕ. Люди часто называют гальванические аноды жертвенными анодами, потому что они потребляются реакцией СР. Это также верно для многих анодов с подаваемым током. Термин «жертвенный» подразумевает, что источника питания не существует и что используемые аноды более активны, чем защищаемая структура.

Каковы преимущества системы с гальваническим анодом?

Системы с гальваническими анодами обладают двумя основными преимуществами. Во-первых, им не нужен источник питания. И во многих приложениях стоимость обеспечения питания и установки блока питания может быть весьма значительной. Во-вторых, поскольку нет источника питания, они практически не требуют регулярного обслуживания. При правильном применении эти два преимущества делают гальванические анодные системы рентабельными.

Каковы недостатки гальванических анодных систем?

Системы гальванической катодной защиты имеют три существенных ограничения. 1) Ограниченная мощность. Движущая сила между анодом и конструкцией ограничена максимальным значением около 1 В и часто намного меньше движущей силы 1 В. Более крупные конструкции часто требуют большего тока, чем то, что может быть экономически обеспечено гальваническими анодами. 2) Ограниченный срок службы. Гальванические аноды потребляют при относительно больших расходах в пересчете на несколько кг/ампер в год. Это значительно ограничивает срок службы анода в некоторых приложениях. 3) Ограниченный контроль. Гальванические аноды не имеют источника питания, поэтому мы не можем регулировать выходную мощность, изменяя мощность, подаваемую на анод. Системы с гальваническим анодом работают исключительно на основе сопротивления системы, полагаясь на перепад напряжения между анодом и конструкцией.

Что такое анод под давлением?

Аноды с импульсным током разряжают ток при питании от внешнего источника постоянного тока. Обычно этот внешний источник представляет собой трансформатор/выпрямитель, который преобразует мощность переменного тока в мощность постоянного тока. При наличии достаточного количества внешних блоков питания анодные системы с подаваемым током могут отводить ток, достаточный для защиты практически любой конструкции. Это не зависит от размера или состояния покрытия. Нам не нужно выбирать эти аноды на основе их уровня активности. Вместо этого мы можем выбрать их на основе их текущих характеристик разряда — какой ток они могут выдержать. Три наиболее распространенных анода с подаваемым током — это графит, чугун с высоким содержанием кремния и аноды электрокаталитического типа.

Каков ожидаемый срок службы анода?

Существует два основных класса анодов. Аноды, которые вступают в электрохимическую реакцию для генерации электрического тока, включают в себя аноды из магния, цинка и алюминия, а также графита и чугуна с высоким содержанием кремния. Эти аноды потребляют с определенной скоростью в зависимости от генерируемого тока. Мы можем определить их скорость потребления в единицах массы, потребляемой в килограммах на каждые столько-то ампер-лет работы. Всегда следует учитывать возможность использования анода. Вы никогда не сможете полностью израсходовать 100% массы анода. В какой-то момент деградация анода влияет на его работоспособность. Таким образом, для этих электрохимически реактивных анодов вполне возможно рассчитать ожидаемый срок службы анода.

Второй класс анодов – электрокаталитические. Они не являются реагентами, но способствуют электрохимическим реакциям. Эти аноды каталитического типа изготавливаются либо на основе платины, либо на основе MMO. ММО — это сокращение от смешанного оксида металла. ММО представляет собой покрытие, состоящее из оксидов металлов иридия (или рутения) и других компонентов. Поскольку эти аноды являются каталитическими, они потребляют не так, как электрохимически реактивные аноды. С анодами MMO не происходит заметной потери массы. Это потому, что они не реагируют напрямую с электролитом. Тем не менее, эти каталитические аноды имеют свой собственный определяемый срок службы анода, также основанный на ампер-годах работы.

Что такое анод из смешанных оксидов металлов (MMO)?

ММО представляет собой покрытие, состоящее из смеси оксидов редкоземельных металлов с иридием или рутением в качестве активного катализатора. Иридий подходит для всех сред CP, в то время как аноды на основе рутения подходят только для применений с морской водой. Точная смесь покрытия может варьироваться от производителя к производителю. Главное, чтобы у производителя была проверенная рецептура и мы могли предсказуемо рассчитать его эксплуатационные характеристики. Сюда входит срок службы анода, основанный на программах ускоренных испытаний на срок службы. Производители наносят эти анодные покрытия MMO на подложку из технически чистого титана Grade I или Grade II. Некоторые из распространенных форм анодов MMO включают проволоку, стержни, трубки, полосы, ленточные сетчатые полосы и листы, пластины и диски.

Что такое выпрямитель?

Выпрямитель — это просто источник питания, который преобразует мощность переменного тока в мощность постоянного тока. Для большинства систем катодной защиты с импульсным током выпрямитель является неотъемлемым компонентом конструкции системы. Выпрямители доступны в различных типах корпусов в зависимости от окружающей среды и классификации взрывоопасных зон места. Размер выпрямителя основан на максимальной номинальной мощности постоянного тока. Например, 50 В x 50 А означает, что выпрямитель способен выдавать мощность 2500 Вт.

Какова правильная проводка постоянного тока для выпрямителя с катодной защитой?

Очень важно правильно установить полярность на выходе выпрямителя постоянного тока перед подачей питания на выпрямитель или источник питания. Положительный постоянный ток должен всегда подключаться к анодной системе. И отрицательный постоянный ток всегда должен подключаться к выводам конструкции, подключенным к конструкции. Повторюсь, анод всегда должен подключаться к плюсу. Структура к негативу. Если выводы анода и конструкции подключены к противоположной полярности, ток будет отводиться от конструкции к анодной системе. Это может иметь катастрофические последствия, вызывая ускоренную коррозию конструкции. Для стали это будет составлять 20 фунтов/ампер в год.

Что такое испытательная станция катодной защиты?

Испытательные станции являются еще одним ключевым компонентом конструкции системы катодной защиты. Обычно мы устанавливаем испытательные станции в стратегически важных местах, чтобы обеспечить доступ для тестирования. Испытательная станция — это общее название. Они могут варьироваться от простого провода от трубы или заглубленной конструкции до испытательной станции, которая обеспечивает простое электрическое соединение. Очень сложные испытательные станции могут включать в себя датчики скорости коррозии, купоны переменного и постоянного тока и оборудование для удаленного сбора данных и мониторинга.

Что такое кабель HMWPE? Что такое кабель HMWPE/Kynar или HMWPE/Halar?

В отрасли катодной защиты типичны заглубленные аноды и суровые условия эксплуатации. Для защиты целостности анодной кабельной системы в промышленности используется кабельная система «прямого заглубления». Наиболее распространенным в США является кабель из полиэтилена с высокой молекулярной массой или HMWPE. Эта изоляция кабеля обычно имеет толщину 110 мил и более, она чрезвычайно прочна и ее трудно повредить даже при самом жестком обращении. Для некоторых сред с высоким содержанием хлора обычно используется двойная изоляция с внутренней оболочкой из фторполимера. Наиболее распространенными типами являются PVDV (Kynar) и ECTFE (Halar). Они имеют очень похожие характеристики химической стойкости.

Где в системах CP используются кабели HMWPE/Kynar или HMWPE/Halar с двойной изоляцией?

Кабель для прокладки в грунт с двойной изоляцией имеет внутренний слой из химически стойкого фторполимера (кинар или халар). Это обеспечивает дополнительную химическую стойкость в средах с высоким содержанием хлора. Если присутствуют соли, эти соли могут привести к образованию газообразного хлора, который реагирует с водой с образованием соляной кислоты. Это может сильно повредить стандартный кабель. Мы настоятельно рекомендуем дополнительную химическую защиту кабелей с двойной изоляцией в местах с высокой плотностью тока в среде, богатой хлоридами, с минимальной подвижностью газа или электролита. Глубокие слои анодного заземления, засоленные почвы и заболоченные участки могут создать проблемы для стандартного кабеля. Эти приложения требуют более химически инертной изоляции кабеля.

В чем проблема с соединениями кабеля с анодом при катодной защите?

Для систем катодной защиты с подаваемым током крайне важно, чтобы на кабеле или каких-либо кабельных соединениях не было надрезов, порезов или трещин. Это особенно важно для кабелей анода, подключенных к положительной стороне источника питания. Если какая-либо часть анодной кабельной системы скомпрометирована, а медный проводник имеет обратный электрический путь в окружающую среду, то медь становится непреднамеренным анодом. Он начнет очень быстро потреблять, что приведет к обрыву цепи и неработоспособной системе КП. Таким образом, со стороны анода очень важно, чтобы каждый сросток или соединение были полностью водонепроницаемыми и чтобы вся изоляция кабеля была в хорошем состоянии.

Что такое RMU? Как системы катодной защиты используют RMU?

RMU — это сокращение от Remote Monitoring Unit. При дистанционном мониторинге катодной защиты RMU обычно используются для контроля и, в большинстве случаев, управления работой выпрямителей в системах катодной защиты с подаваемым током. Мы также применяем RMU на испытательных станциях, критически важных соединениях и в других приложениях для мониторинга. Доступны различные технологии, включая широкополосную, сотовую и спутниковую связь, позволяющие осуществлять мониторинг и управление системой.

Что такое обследование CIS (или CIPS)?

CIS или исследование с малым интервалом, в международном масштабе чаще называемое CIPS (исследование потенциала с малым интервалом), является распространенным средством проверки надлежащих характеристик системы катодной защиты вдоль трубопроводов большой протяженности или внутри станций/сетей трубопроводов. Обследование состоит из снятия возможных показаний, когда бригада проходит по центру подземного трубопровода. Обычно мы считываем эти показания при циклическом включении и выключении всех влияющих источников тока через равные промежутки времени. Таким образом, показания фиксируют потенциал между трубой и электродом сравнения. Мы фиксируем как текущие показания во включенном, так и в выключенном состоянии. Этот процесс повторяется по всей длине трубопровода. Затем мы анализируем данные включения/выключения, чтобы подтвердить, что система CP работает правильно и обеспечивает требуемую поляризацию системы.

Что такое «прерыватель»?

Прерыватель — это сложный переключатель, который можно использовать для прерывания работы выпрямителя. Используемые сегодня прерыватели автоматически синхронизируются со спутниковым сигналом, что позволяет многочисленным прерывателям синхронизироваться с одним и тем же временем, чтобы собранные данные об отключении были точными. Многие новые трубопроводные выпрямители оснащены встроенными прерывателями, которые мы можем дистанционно активировать для обследований и тестирования системы CP.

Что такое система с глубоким анодом?

Иногда называемая глубоким анодным колодцем или глубоким анодным заземлителем, система глубокого анода часто является эффективным средством подачи большого количества тока в землю из одного места с очень небольшой площадью поверхности. Мы используем обычное буровое оборудование для бурения скважин глубиной примерно 200-400 футов. Затем мы опускаем один или несколько анодов в отверстие перед засыпкой отверстия. Мы располагаем аноды достаточно далеко от поверхности, чтобы иметь возможность считать их электрически удаленными от конструкции. В результате мы можем проецировать ток в перегруженную подземную среду или распределять ток на мили в каждом направлении для изолированных трубопроводов.

Что такое газовая блокировка анода?

Электрохимическая реакция катодной защиты приводит к образованию газа как части реакционного процесса. Это также высвобождает электроны, позволяя току распределяться по электролиту. В большинстве сред этот газ может куда-то диффундировать или выделяться. Однако в тех редких случаях, когда образовавшийся газ не может мигрировать от поверхности анода, газ может фактически блокировать поток электронов и подавлять реакцию катодной защиты. Это чаще встречается в системах с глубокими анодами, где отверстие пробуривается с поверхности вниз в землю, а окружающая среда вокруг отверстия может быть не очень проницаемой, что улавливает газы. В большинстве систем с глубоким анодом используется вентиляционная труба, позволяющая газам выходить, чтобы предотвратить блокировку газа.

Что такое вентиляционная труба?

Вентиляционные трубы представляют собой трубы малого диаметра с просверленными отверстиями или прорезями, которые позволяют газам отводиться от анода во время процесса катодной защиты. Это уменьшает скопление газов вокруг анода или концентрацию соляной кислоты с низким pH, которая может образовываться, когда имеется избыток газообразного хлора, который не удаляется. Эта среда с низким pH может повредить изоляцию кабеля из высокомолекулярного полиэтилена и привести к преждевременному выходу кабеля из строя.

Какова роль материала коксовой засыпки?

Почти все заглубленные аноды имеют ту или иную форму обратной засыпки. Он либо встроен в корпус анода, либо поставляется снаружи для установки. Впрессованные токовые аноды обычно используют коксовую засыпку. Основная роль коксовой засыпки заключается в обеспечении однородной среды с низким сопротивлением, в которую анод может легко отводить ток. Это помогает уменьшить любые проблемы с плохим контактом заземления заглубленного анода. Кроме того, это увеличивает эффективный размер анода, уменьшая засыпку анода до сопротивления земли.

Расходуется ли также закладка кокса, и если да, то сколько?

Углерод сам по себе может выступать в качестве анода под давлением. Когда в коксовой засыпке установлен еще один анод с подаваемым током, часть коксовой засыпки будет действовать как продолжение анода с подведенным током. В той мере, в какой потребляется углерод, вероятно, снижается потребление подаваемого тока на аноде. Насколько быстро расходуется коксовая засыпка и какое положительное влияние это оказывает на фактический срок службы анода, во многом зависит от конкретной площадки. Переменные параметры включают качество коксовой колонны, уплотнение частиц кокса, уровень влажности и форму частиц.

Для электронов существует два режима проводимости. При электронной проводимости электроны текут от анода через кокс. Как продолжение фактического анода, электрохимическая анодная реакция происходит от углерода к окружающей среде. В результате углерод является реагентом. Ионный перенос имеет место, когда ток генерируется на аноде, а затем течет по пути прохождения влаги по внешней стороне частиц кокса. При этом углерод не используется в качестве основного реагента, и поэтому потребление не происходит. Суть в следующем: трудно знать, как будет работать отдельная установка или с какой скоростью будет расходоваться засыпка.

Где я могу узнать больше о катодной защите?

Конечно, вы всегда можете связаться с MATCOR, однако темы ScienceDirect включают множество книг и рецензируемых журналов по теме ДЦП.

У вас есть вопрос, на который здесь нет ответа?

Мы ответим на ваш вопрос по электронной почте и опубликуем его здесь.


Системы катодной защиты и услуги

MATCOR предлагает ряд решений для защиты объектов инфраструктуры, включая:

  • Газопроводы
  • Наземные резервуары для хранения
  • Морские сооружения, такие как доки и пирсы
  • Трубопровод установки
  • И еще…

Системы катодной защиты MATCOR включают:

  • Линейные аноды с импульсным током
  • Глубокие анодные системы
  • Резервуарные анодные системы
  • Морские и водные анодные системы
  • Аноды заземления
  • Аноды внутреннего зонда

Дополнительные компоненты системы CP
  • Выпрямители катодной защиты
  • Электроды сравнения для катодной защиты
  • Кабель
  • Соединительные коробки
  • Комплекты для сращивания
  • Испытательные станции катодной защиты

Просмотреть все решения MATCOR для катодной защиты
  • Продукты и материалы
  • Услуги катодной защиты

Чтобы связаться с нашей командой экспертов по катодной защите для получения дополнительной информации, задать вопрос или получить предложение, нажмите ниже. Мы ответим по телефону или электронной почте в течение 24 часов. Для немедленной помощи, пожалуйста, позвоните по телефону +1-215-348-2974.

Связаться со специалистом по коррозии

Что такое катодная защита? — Linc Energy Systems

Катодная защита (CP) используется для контроля коррозии металлических материалов в различных областях применения. Типичными областями применения этой науки являются топливные баки, сваи пирсов, корабли, морские нефтяные платформы и кожухи, металлические арматурные стержни для бетонных конструкций и трубопроводы.

Запросить предложение

Катодная защита

Чтобы упростить катодную защиту, предположим, что у вас есть металлический трубопровод, и вам необходимо защитить его от коррозии. Мы дополняем трубопроводы CP после защиты антикоррозионной системой (покрытием или пленкой), такой как Trenton Wax Tape, в качестве основной формы защиты от коррозии. В противном случае катодная защита, необходимая для борьбы с коррозией для непокрытого трубопровода, является избыточной.

Первый шаг в катодной защите — взять металл, который вы пытаетесь защитить (трубопровод), и превратить его в катод. Трубка обычно анодная; содержит положительно заряженные частицы. При подаче электрического тока линия становится пассивной или катодной. Наука показывает, что коррозия будет предотвращена или значительно замедлена, если поток будет достигать катода (трубопровода) быстрее, чем кислород.

Трубопроводы обычно используют катодную защиту импульсным током (ICCP), в которой используются выпрямитель и аноды, закопанные в землю. Выпрямитель (источник питания постоянного тока) подает электроны в систему, останавливая коррозию трубопровода. Поскольку аноды не отдают много электронов, они также не сильно ржавеют.

Иногда более экономично использовать систему с гальваническим анодом. Аноды (магниевые, цинковые или алюминиевые) являются источником электронов и подвергаются коррозии на стальном трубопроводе.

Продукты для поддержки систем CP

Подземная испытательная станция CP

Rhino HideOut — это подземная (CP) испытательная станция катодной защиты, которая обеспечивает превосходную видимость, надежна, легкодоступна и устанавливается заподлицо с землей, устраняя помехи косилке.

Изоляция фланцев и изоляция соединений

Изоляция фланцев и изоляция соединений — это два способа предотвращения возникновения электрохимических реакций между двумя разными металлами путем разрыва металлического пути или предотвращения прохождения тока в системе катодной защиты (CP) за пределы защищаемой области. по системе КП.

Термоэлектрический генератор (ТЭГ) для катодной защиты

Термоэлектрические генераторы (ТЭГ) обеспечивают экономичный, надежный и непрерывный электрический ток в труднодоступных местах СР. Если вас интересует ТЭГ для системы КП, компания Global Power Technologies специализируется на них.

Антикоррозийные системы

Trenton Wax Tape — это антикоррозионная лента, обеспечивающая катодную защиту нефте- и газопроводов.

катодная защита, контроль коррозии, CP

Сьюзен Бендер

Сьюзан Бендер начала продавать в газовой промышленности в 1980 году.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *