Десмодромный механизм газораспределения: 403 — Доступ запрещён – Газораспределительный механизм — Википедия

Содержание

Система изменения фаз газораспределения — Википедия

Система изменения фаз газораспределения (англ. variable valve timing, VVT) в двигателях внутреннего сгорания предназначена для изменения времени открытия клапанов и часто применяется для улучшения показателей эффективности, экономичности и токсичности. Система все более часто используется совместно с системой изменения высоты подъёма клапанов. Изменение фаз газораспределения может достигаться разными способами: полностью механическим, электро-гидравлическим и при конструкции двигателей без использования кулачков. Одной из причин внедрения автопроизводителями систем изменения фаз газораспределения является законодательное ужесточение норм токсичности.

Клапаны в двигателях внутреннего сгорания используются для управления потоками газов, втекающих и истекающих из камеры сгорания. Момент смены состояния клапана (открытие или закрытие), продолжительность нахождения в одном состоянии и высота подъёма этих клапанов в высокой степени оказывают влияние на эффективность двигателя. Без установки системы изменения фаз газораспределения или системы изменения высоты подъёма клапанов момент смены состояния этих клапанов будет независим от скорости и условий работы двигателя, что предполагает усреднённую настройку таких параметров

[1]. Система изменения фаз газораспределения позволяет избавиться от этого ограничения, позволяя улучшить эффективность во всем рабочем диапазоне двигателя.

В поршневых двигателях обычно клапаны приводятся в действие посредством распределительного вала. Кулачки открывают (поднимают) клапана на определённый промежуток времени (длительность) во время каждого цикла впуска и выпуска. Момент открытия и закрытия клапанов важен и зависит от положения коленчатого вала. Распределительный вал приводится в движение от коленчатого вала посредством приводного ремня, цепи или зубчатой передачи.

Для работы на высоких скоростях двигателю требуется большой объём воздуха. Однако в таком случае впускные клапана могут закрыться раньше, прежде чем в камеру сгорания поступит необходимое количество воздуха, что снижает эффективность. С другой стороны, при оборудовании двигателя распределительным валом, позволяющим клапанам дольше оставаться открытыми, например, при установке спортивных модификаций кулачков, двигатель будет испытывать проблемы при работе на низких скоростях. Открытие впускных клапанов до закрытия выпускных может приводить к выбросу не сгоревшего топлива из двигателя, что снижает эффективность двигателя и увеличивает токсичность.

Ранние системы изменения фаз газораспределения имели дискретный (ступенчатый) принцип действия. Например, одна настройка момента открытия и закрытия клапанов при работе двигателя на скорости ниже 3500 мин−1, вторая настройка — при работе двигателя на скорости выше 3500 мин−1. Более современные системы производят плавную (бесступенчатую) регулировку момента открытия и закрытия клапанов. Такие системы позволяют производить оптимальную настройку механизма газораспределения для любых скоростей и условий работы двигателя[1][2].

Одной из простейших реализаций системы изменения фаз газораспределения является система сдвига фаз, при которой распределительный вал может быть повёрнут на некоторый угол вперёд или назад относительно положения коленчатого вала. При этом клапана закрываются и открываются раньше или позже, однако высота подъёма клапанов и длительность открытия и закрытия остаются неизменны. Для возможности регулировки длительности в системе изменения фаз газораспределения требуется внедрение более сложных механизмов, включающих, например, несколько кулачковых профилей или колеблющиеся кулачки.

Позднее закрытие впускных клапанов (англ. late intake valve closing, LIVC). Первыми реализациями изменения момента закрытия клапанов были системы, позволяющие оставлять клапан открытым дольше, чем в двигателе, не оборудованном такой системой. В результате был достигнут эффект выталкивания воздуха из цилиндра во впускной коллектор во время цикла сжатия. Вытесненный из цилиндра воздух повышает давление во впускном коллекторе, вследствие чего при следующем открытии впускного клапана воздух в цилиндр будет подаваться по б́ольшим давлением. В результате внедрения позднего закрытия выпускных клапанов достигается снижение потерь до 40 % во впускном тракте, а также снижение выбросов оксидов азота (NOx) до 24 %. Максимальный крутящий момент двигателя при этом снижается приблизительно на 1 %, а выбросы углеводородов не изменяются[2].

Раннее закрытие впускных клапанов (англ. early intake valve closing, EIVC). Другим способом снижения потерь во впускном тракте, применимым на малых скоростях работы двигателя, является создание высокого разрежения во впускном коллекторе, используя раннее закрытие впускных клапанов. Для достижения этого впускные клапаны должны закрываться в ходе цикла впуска. При малой загрузке потребности двигателя в топливо-воздушной смеси небольшие, однако достаточно высоки требования к наполнению ей цилиндров, что возможно достигнуть внедрением раннего закрытия впускных клапанов

[2]. Исследования показали, что на двигателях с ранним закрытием впускных клапанов наблюдается снижение потерь во впускном тракте до 40 %, а также увеличение экономичности до 7 %. Также наблюдается снижение выбросов оксидов азота до 24 % в режимах с частичной нагрузкой. Возможной негативной стороной внедрения раннего закрытия впускных клапанов является существенное снижение температуры в камере сгорания, что может вызвать увеличение выбросов углеводородов[2].

Раннее открытие впускных клапанов (англ. early intake valve opening). Ранее открытие впускных клапанов является способом существенного уменьшения токсичности. В традиционном двигателе для управления температурой в цилиндрах используется процесс, известный как перекрытие клапанов. При раннем открытии впускных клапанов часть выхлопных газов, перетекая через впускной клапан, попадает во впускной коллектор, где быстро охлаждается. При впуске инертные отработанные газы в значительной степени заполнят цилиндр, благодаря чему достигается снижение температуры в цилиндре и уменьшение выбросов оксидов азота. Также раннее открытие впускных клапанов улучшает объёмную эффективность, поскольку объём выброса отработанных газов уменьшается в ходе цикла выпуска

[2].

Раннее и позднее закрытие выпускных клапанов (англ. early/late exhaust valve closing). Внедрение этих систем позволяет достигать уменьшения токсичности. В традиционном двигателе на цикле выпуска движением поршня отработанные газы выталкиваются в выпускной коллектор и далее в выхлопную систему. Посредством раннего и позднего закрытия выпускных клапанов возможно управлять объёмом отработанных газов, остающихся в цилиндре. Оставляя клапан открытым дольше обычного, достигается более полное его очищение от отработанных газов и заполнение цилиндра б́ольшим объёмом свежей топливо-воздушной смеси. При раннем закрытии выпускных клапанов в цилиндре остаётся больше отработанных газов, благодаря чему увеличивается экономичность. Система позволяет двигателю сохранять эффективность во всех режимах работы.

Основным фактором, препятствующем повсеместному широкому внедрению системы в автомобильной промышленности, является создание экономически эффективных решений по управлению фазами газораспределения в зависимости от условий, имеющихся в двигателе.[источник не указан 431 день] В двигателе, работающем при 3000 мин−1, распределительный вал должен вращаться со скоростью 25 мин−1, таким образом для получения преимуществ моменты открытия и закрытия клапанов должны выбираться очень точно. Электромагнитные и пневматические системы, не использующие кулачки для привода клапанов, позволяют достичь максимальной точности в управлении моментом открытия и закрытия клапанов, однако, по состоянию на 2016 год не существует экономически эффективных реализаций для производителей массовых транспортных средств.[источник не указан 431 день]

Паровые двигатели[править | править код]

История поиска методов изменения длительности открытия клапанов начитается во времена паровых двигателей, где изменение длительности открытия клапанов известно как «отсечение пара». В ранних паровозах использовался так называемый редуктор Стивенсона, который и осуществлял изменение «отсечения», то есть изменение времени, после которого поступление пара в рабочий цилиндр прекращалось.

Ранние системы изменения «отсечения» соединяли в себе «отсечение» поступающего пара с разными реализациями отсечения отработанного пара. Разъединение этих систем было произведено с разработкой парового двигателя Корлисса. Его принцип был широко использован в стационарных двигателях, работающих на постоянной скорости с различной нагрузкой. В них управление «отсечением» поступающего пара и, как следствие, крутящего момента, осуществлялось центробежным регулятором и запорными клапанами.

После распространения тарельчатых клапанов была внедрена упрощённая система привода клапанов посредством распределительного вала. В подобных двигателях изменение «отсечения» могло быть достигнуто разным профилем кулачков, которые передвигались по распределительному валу регулятором[3].

Авиация[править | править код]

В раннем экспериментальном двигателе V8 разработки фирмы Clerget-Blin, развивавшем 200 л. с., для изменения момента открытия и закрытия клапаном, использовался скользящий распределительный вал. В некоторых видах звездообразных двигателей фирмы Bristol Jupiter начала 1920-х годов также имеется система изменения момента открытия и закрытия клапанов, которая в основном использовалась на впускных клапанах для достижения б́ольшей компрессии

[4]. В двигателе Lycoming XR-7755 была установлена система изменения фаз газораспределения, состоящая из двух кулачков, которые могли быть выбраны пилотом: один для взлёта, ухода от погони и преследования, другой для экономичных полётов.

Автомобили[править | править код]

Желательность наличия системы, позволяющей изменять продолжительность открытия клапанов для его соответствия скорости вращения двигателя, стала очевидной в 1920-х годах, когда предел максимально достижимых рабочих оборотов двигателя стал увеличиваться. К тому времени обороты двигателя на холостом ходу и при его загрузке отличались несущественно, поэтому не было необходимости в изменении длительности открытия клапанов. Незадолго до 1919 года Лоуренс Помрой (англ. Lawrence Pomeroy), главный конструктор компании Vauxhall, разработал двигатель H-Type объёмом 4,4 л, предназначенный для замены существовавшей в то время модели 30-98

[5]. В нём единственный распределительный вал мог перемещаться продольно, что позволяло использовать на нём различные профили. Первые патенты на системы изменения длительности открытия клапанов были выданы в 1920 году, например, патент США U.S. Patent 1 527 456.

В 1958 году компания Porsche подала в Германии, а также в Великобритании заявку на патент, который был опубликован под номером GB861369 в 1959 году. Патент Porsche описывал систему с колеблющимися кулачками, которые используются для увеличения высоты подъёма клапанов и времени их открытия. Десмодромные клапана приводятся в действие движущейся вверх-вниз тягой, соединённой с эксцентриковым валом или шайбовым механизмом. Неизвестно, был ли изготовлен хоть один рабочий прототип.

Первой компанией, запатентовавшей практически реализуемую на автомобилях систему изменения момент открытия и закрытия клапанов, включавшую систему изменения высоты подъёма клапанов, была Fiat. В системе, разработанной Джованни Торацца (итал. Giovanni Torazza) в конце 1960-х годов, гидравлическое давление использовалось для изменения точки опоры толкателей клапанов (U.S. Patent 3 641 988)

[6]. Гидравлическое давление изменяется в зависимости от скорости работы двигателя и давления воздуха во впускном тракте. Обычное изменение момента открытия было 37 %.

Первой компанией, начавшей установку изменения момента открытия и закрытия клапанов на серийно изготовляемые автомобили, стала Alfa Romeo (U.S. Patent 4 231 330)[7]. Автомобили с системой впрыска топлива модели Alfa Romeo Spider в 1980-х годах комплектовались механической системой изменения фаз газораспределения. Она была разработана Джампаоло Гарчеа (итал. Giampaolo Garcea) в 1970-х годах[8]. Модели Alfa Romeo Spider, начиная с 1983 года, комплектуются электронной системой изменения фаз газораспределения[9].

В 1987 году свою систему изменения момента открытия и закрытия клапанов N-VCT представила компания Nissan для своих двигателей VG20DET и VG30DE[источник не указан 431 день]. В 1989 свою систему VTEC также представила Honda[10]. Если ранние системы N-VCT от Nissan исключительно смещали фазы газораспределения, то в системе VTEC происходит переключения на другой профиль кулачка на высоких скоростях работы двигателя, чтобы увеличить максимальную мощность двигателя. Первым двигателем от Honda с системой VTEC был B16A, который устанавливался на модели Integra, CR-X и хэтчбеки Civic, поставляемые в Европу и Японию

[источник не указан 431 день].

В 1992 году Porsche представила систему VarioCam, которая стала первой системой с плавным изменением фаз газораспределения (все предыдущие системы были со ступенчатым их изменением). Система начала устанавливаться на автомобили Porsche 968 и работала только на впускных клапанах.

Мотоциклы[править | править код]

Системы изменения фаз газораспределения устанавливались на мотоциклетные двигатели, однако были приязненны бесполезными «техническими образцами» в конце 2004 года из-за увеличения веса при установке системы[11]. После этого были выпущены следующие мотоциклы с системами изменения фаз газораспределения: Kawasaki 1400GTR/Concours 14 (2007 г.), Ducati Multistrada 1200 (2015 г.) и BMW R1250GS (2019 г.).

Корабли и суда[править | править код]

Системы изменения фаз газораспределения имеют слабое распространение на корабельных двигателях. Корабельные двигатели от Volvo Penta с 2004 года комплектуются системой изменения фаз кулачков, управляемой ЭБУ двигателя, плавно изменяющей опережение или запаздывание распределительного вала[12].

Дизельные двигатели[править | править код]

В 2007 году Caterpillar разработал двигатели Acert серий С13 и С15, в которых система изменения фаз газораспределения используется для снижения выброса оксидов азота с целью избежать использования системы рециркуляции выхлопных газов после введения требований EPA в 2002 году[13].

В 2009 году компания Mitsubishi разработала и начала серийное производство двигателей I4 модели 4N13 с двумя распределительными валами объёмом 1,8 л. Этот двигатель стал первым в мире дизельным двигателем для легковых автомобилей с системой изменения фаз газораспределения[14].

У каждого производителя двигателей данная технология имеет своё название.

  • AVCS (Subaru)
  • AVLS (Subaru)
  • CPS (Proton), однако на новых моделях с 2016 года Proton называет технологию VVT
  • CVTCS (Nissan, Infiniti)
  • CVVT (разработана компаниями Hyundai и Kia, также встречается на Geely, Iran Khodro, Volvo)
  • DCVCP (General Motors)
  • DVT (Ducati)
  • DVVT (Daihatsu, Perodua, Wuling)
  • MIVEC (Mitsubishi)
  • MultiAir (Fiat/FPT)
  • N-VCT (Nissan)
  • S-VT (Mazda)
  • Ti-VCT (Ford)
  • VANOS (BMW)
  • VALVETRONIC (BMW, PSA)
  • VarioCam (Porsche)
  • VCT (Alfa Romeo)
  • VTEC, i-VTEC (Honda, Acura)
  • VTi, (Citroen, Peugeot, BMW)
  • VVC (MG Rover)
  • VVL (Nissan)
  • Valvelift (Audi)
  • VVA (Yamaha)
  • VVEL (Nissan, Infiniti)
  • VVT (Chrysler, General Motors, Proton, Suzuki, Isuzu, Volkswagen Group, Toyota)
  • VVT-i, VVTL-i (Toyota, Lexus)

Переключение кулачков[править | править код]

В этой реализации используются разные профили кулачков. В определённый момент (как правило, при определённой скорости работы двигателя) при помощи привода происходит переключение между профилями. При таком способе реализации изменения фаз газораспределения также возможно изменение высоты подъёма клапаном и изменение длительности открытия клапанов, однако это изменение всегда происходит ступенчато и плавным быть не может. Первым серийным представителем таких систем стала система VTEC компании Honda. В системе VTEC при помощи изменения гидравлического давления приводится в действие штырь, замыкающий в работу коромысло, отвечающее за высокий подъём клапанов и большое время открытия, с находящимся вблизи коромыслом, отвечающим за низкий подъём клапанов и малое время открытия.

Фазировка кулачков[править | править код]

Многие изготовляемые системы изменения фаз газораспределения работают по типу изменения фазировки кулачков посредством устройств, известных как жарг. фазовращатели (англ. variator). Это позволяет производить плавную регулировку, однако многие ранние подобные системы могли выполнять только ступенчатую регулировку. Однако, регулировка длительности открытия и высоты подъёма невозможна.

Колеблющиеся кулачки[править | править код]

В этой реализации используются колебательные или качающиеся движения частей кулачков[источник не указан 429 дней], которые выступают в роли толкателей. В свою очередь, толкатели открывают и закрывают клапана. В некоторых реализациях таких систем используется как традиционный профиль кулачков, так и эксцентриковые профили, и соединительные тяги. Принцип их действия подобен паровым двигателем, где объём пара, поступающего в рабочий цилиндр, регулируется моментом «отсечки» пара. Преимуществом таких систем заключается в плавном характере регулирования высоты подъёма клапанов и длительности открытия. Недостатком же является то, что подъём клапанов пропорционален длительности открытия, и их независимая регулировка невозможна.

Примерами подобных систем являются Valvetronic (BMW)[15], VVEL (Nissan) и Valvematic (Toyota), в них системы колеблющихся кулачков устанавливаются только на впускных клапанах.

Эксцентриковый привод кулачков[править | править код]

Системы с эксцентриковым приводом кулачков работают посредством эксцентрикового дискового механизма, который уменьшает и увеличивает угловые скорости профиля кулачков при их вращении. Уменьшение этой скорости во время, когда клапан открыт, соответствует увеличению длительности открытия клапана. Преимуществом такой системы является возможность независимой регулировки длительности открытия клапанов и высоты подъёма[16] (однако, в них невозможна регулировка подъёма). К недостаткам этих систем относится их сложность (необходимо устанавливать два эксцентриковых привода и два их контроллера на каждый цилиндр — по одной паре устройств на впускные и выпускные клапана), что увеличивает стоимость системы.

Единственным производителем, внедрившим такую системы, стал MG Rover.[источник не указан 429 дней]

Трёхмерный профиль кулачков[править | править код]

В этих системах кулачки имеют профиль, который также изменяется по их длине в форме[17], подобной конической. На одном конце кулачка представлен профиль с малой высотой подъёма клапанов и малым временем открытия, на другом конце — профиль с большой высотой подъёма клапанов и увеличенным временем открытия. В средней части длины кулачка осуществляется плавный переход между этими профилями. Плавная регулировка высоты подъёма клапанов и длительности открытия может быть осуществлена смещением места контакта толкателя клапана с профилем кулачка. Это достигается путём осевого перемещения распределительного вала («скольжением» вдоль двигателя), таким образом неподвижный толкатель клапанов будет контактировать с разными участками профиля кулачка, благодаря чему достигаются разные значения высоты подъёма клапанов и длительности открытия. Недостатком этих систем является крайне сложное проектирование профиля кулачков, поскольку конструкция должна обеспечивать минимальные контактные напряжения, возникающие из-за изменений профиля.

Обычно к использующим такую систему относят Ferrari[18][19], тем не менее остаётся доподлинно неизвестным, используются ли подобные системы в её серийных моделях.

Двухвальный комбинированный профиль кулачков[править | править код]

Об использовании этих систем в серийных двигателях информация отсутствует.

Система состоит их двух близко расположенных распределительных валов и поворотного толкателя, который приводится в действие обоими распределительными валами. Движение этого толкателя передаёт движение профилей кулачков обоих распределительных валов одновременно. Каждый распределительный вал оборудуется своей системой изменения фаз газораспределения, которых позволяют изменят угловое положение распределительных валов относительно коленчатого вала. Профиль кулачков на одном распределительном валу управляет закрытием клапанов, а профиль кулачков на другом распределительном валу — закрытием тех же клапанов. Таким образом, регулировка длительности открытия клапанов регулируется интервалом между этими событиями.

Среди недостатков таких систем можно выделить:

  • При большой длительности открытия высота профиля на одном кулачке может начать уменьшаться, в то время как на другом — увеличиваться. Это будет приводить к суммарному уменьшению высоты профиля кулачков и может вызывать недостатки в динамике двигателя. Имеются патенты, посвящённые решению в некоторой степени проблемы неравномерной высоты открытия клапанов, тем самым делающие возможной работу системы на полной высоте профиля кулачков при большой длительности открытия клапанов[20][21][22].
  • Из-за наличия в системе двух распределительных валов увеличиваются размеры системы, толкателей и других элементов.

Двухвальный комбинированный профиль кулачков с соосным расположением валов[править | править код]

Об использовании этих систем в серийных двигателях информация отсутствует.

Принцип работы системы также состоит в том, что один толкатель приводится в действие профилями кулачков, расположенных на двух разных распределительных валах. С точностью до ограничения по углу, обусловленного радиусом оконечного закругления толкателя, толкатель «ощущает» комбинацию поверхностей двух профилей кулачков как плавную, непрерывную поверхность. Когда вращение кулачков максимально выровнено, длительность открытия клапана минимальна и соответствует профилю каждого кулачка по отдельности. Наоборот, когда угол между кулачками при вращении наибольший, длительность открытия клапана максимальна. Основным ограничением подобных систем является то, что возможно только регулировка длительности открытия клапанов, равная (в градусах движения распределительного вала) закруглению профиля острого конца кулачка.

Подобный принцип лёг в основу, вероятно, первой запатентованной в 1925 году Ведомством по патентам и товарным знакам США системы изменения кулачков (U.S. Patent 1 527 456). Также к данном типу относится так называемый «распределительный вал Клемсона»[23].

Спиральный распределительный вал[править | править код]

Также «Двухвальный комбинированный профиль кулачков с соосным расположением валов и спиральным движением», об использовании этих систем в серийных двигателях информация отсутствует.

Принцип аналогичен ранее рассмотренному, в нём могут использоваться такого же профиля длительности. Однако вместо простого плоского поворота кулачков для регулировки используется совокупность осевого и поворотного движений, что является трёхмерным спиральным движением. Посредством такого движения преодолеваются ограничения, связанные с длительностью в ранее рассмотренной системе. Длительность открытия клапанов при этом теоретически не ограничена, однако обычно не составляет более 100 градусов движения распределительного вала, чего достаточно для работы в большинстве ситуаций.

По сообщениям, кулачки для таких системы сложны и затратны в изготовлении, требуется очень высокая точность при изготовлении спиральных элементов, а также должна быть обеспечена бережная сборка.

Двигатели без кулачков[править | править код]

К таким двигателям относятся те двигатели, которым не требуется распределительный вал для управления клапанами. Клапана в таких системах обладают высокой гибкостью для регулирования фаз газораспределения и высоты подъёма клапанов. Тем не менее, по состоянию на 2019 год не существует подобных систем, предназначенных для транспортных средств для дорог общего пользования.

Выделяют следующие типы двигателей без кулачков:

  • электромеханические (с использованием электромагнитов)
  • гидравлические
  • пневматические
  • с использованием шаговых двигателей.
  1. 1 2 Wu, B. (2007). A simulation-based approach for developing optimal calibrations for engines with variable valve actuation. Oil and Gas Science and Technology, 62(4), 539—553.
  2. 1 2 3 4 5 Hong, H. (2004). Review and analysis of variable valve timing strategies — eight ways to approach. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(10), 1179—1200.
  3. ↑ Variable Valve Timing - 1886 - Practical Machinist (неопр.). Practical Machinist. Дата обращения 4 апреля 2010.
  4. Arthur W., Gardiner REPORT No. 272: THE RELATIVE PERFORMANCE OBTAINED WITH SEVERAL METHODS OF CONTROL OF AN OVERCOMPRESSED ENGINE USING GASOLINE (неопр.) (PDF). Langley Research Center/Langley Aeronautical Laboratory (25 февраля 1927).
  5. Coomber, Ian. Vauxhall: Britain's Oldest Car Maker (неопр.). — Fonthill Media, 2017. — С. 46. — ISBN 978-1781556405.
  6. ↑ VALVE-ACTUATING MECHANISM FOR AN INTERNAL COMBUSTION ENGINE (неопр.). freepatentsonline.com. Дата обращения 12 января 2011.
  7. ↑ Timing variator for the timing system of a reciprocating internal combustion engine (неопр.). freepatentsonline.com. Дата обращения 12 января 2011.
  8. ↑ Alfa Romeo Spider FAQ (неопр.) (PDF). alfaspiderfaq.org. Дата обращения 29 ноября 2008.
  9. Rees, Chris. Original Alfa Romeo Spider (неопр.). — MBI Publishing 2001. — С. 102. — ISBN 0-7603-1162-5.
  10. ↑ asia.vtec.net
  11. Wade, Adam. Motorcycle Fuel Injection Handbook (неопр.). — MotorBooks International (англ.)русск., 2004. — С. 149—150. — ISBN 1610590945.
  12. ↑ Volvo Penta Variable Valve Timing (VVT) (неопр.). www.marineenginedigest.com. Дата обращения 27 октября 2012.
  13. ↑ [1]
  14. ↑ «Geneva 2010: Mitsubishi ASX (Outlander Sport) Debuts in Geneva», autoguide.com
  15. ↑ Autospeed Valvetronic Article (неопр.). Дата обращения 17 января 2012.
  16. ↑ Rover VVC Article (неопр.). Дата обращения 17 января 2012.
  17. ↑ howstuffworks.com
  18. Lumley, John L. Engines - An Introduction (неопр.). — Cambridge UK: Cambridge University Press, 1999. — С. 63—64. — ISBN 0-521-64277-9.
  19. ↑ HowStuffWorks - Ferrari 3D cam article (неопр.). Дата обращения 17 января 2012.
  20. ↑ USPTO 5052350 (неопр.). Дата обращения 17 января 2012.
  21. ↑ USPTO 5642692 (неопр.). Дата обращения 17 января 2012.
  22. ↑ Mechadyne VLD (неопр.). Дата обращения 17 января 2012.
  23. ↑ USPTO 4771742 (неопр.). Дата обращения 17 января 2012.

как закрыть клапан быстрее пружины?

Изучать строение обычных автомобилей, коих тысячами ездит по улицам наших городов, полезно, но порой бывает скучно. Поэтому, дорогие читатели, сегодня наш рассказ посвящён кое-чему экзотическому — мы узнаем о том, что такое десмодромный механизм.

Однако, здравствуйте!

ГРМ и его проблемы

Заинтригованы? Надеемся, что да. Итак, как Вы уже, наверное, знаете, одним из ключевых компонентов двигателя внутреннего сгорания является газораспределительный механизм (ГРМ).

На него возложена важнейшая функция: управлять открытием клапанов цилиндров и делать это в чётко обозначенные моменты, зависящие от движения поршня.

На первый взгляд всё просто – распределительный вал, связанный ременной или цепной передачей с коленвалом, вращается и, имея в своём распоряжении так называемые кулачки, воздействует ими через систему коромысел или толкателей на клапанный механизм.

Но тут начинаются сложности. Чтобы вернуть клапан в исходное положение (в закрытое), как правило, используются пружины, которые при высоких оборотах мотора просто не успевают его полностью закрыть в силу своей инерционности и паразитного резонанса.

Особенно это актуально для гоночных и спортивных автомобилей, где силовые агрегаты могут раскручиваться до 9000 и более оборотов.

Что же делать?

Ответ на этот вопрос был найден ещё в 50-х годах ХХ столетия. «Если пружины мешают, то давайте от них откажемся» — подумали конструкторы. В результате этой идеи повилась десмодромная система, которая в международной технической терминологии известна как Desmodromic.

Десмодромный механизм привода клапанов

Десмодромный механизм. Удел избранных

Суть десмодромного механизма заключается в следующем: распределительный вал отвечает не только за открытие клапанов, но и за их закрытие.

Реализовано это при помощи системы нескольких коромысел, управляющих одним клапаном, и кулачков распредвала более сложной формы. Иногда в данной схеме ГРМ возможно применение нескольких валов, каждый из которых отвечает только за открытие или закрытие.

Десмодромный принцип

Казалось бы, все проблемы решены и можно массово внедрять десмодромную систему газораспределительного механизма. Но не тут-то было! У этой конфигурации всплыли и заметные недостатки, которые не позволили ей попасть под капоты автомобилей повсеместно. В частности проблем несколько:

  • высокая стоимость механизма из-за необходимости прецизионно подгонять его детали;
  • шумность моторов с десмодромным механизмом;
  • сложность в обслуживании;
  • большие размеры по сравнению с классическими типами ГРМ.

Таким образом, столь интересное изобретение моторостроителей осталось уделом лишь избранных моделей авто и мотоциклов – в основном гоночных типов, где ценится чёткость работы двигателя на высоких оборотах. На сегодняшний день десмодромную схему использует только компания Ducati, компонуя ею мотоциклетные моторы.

Мотоциклетный двигатель Ducati с десмодромным механизмом привода клапанов Фото. Мотоциклетный мотор Ducati с десмодромным приводом, где два верхних распредвала и четыре клапана на цилиндр.

 

Двигатель Honda с десмодромным приводом

 

Уважаемые читатели и подписчики, хочется верить, что наша статья об экзотическом типе газораспределительного механизма была полезна и интересна. Следите за публикациями блога и не забывайте подписываться, чтобы не пропустить появление свежих материалов.

Советую прочитать статью о инновационном двигателе без распредвала.

До скорой встречи!

История клапанной системы Ducati Desmodromic / Ducati / БайкПост

История клапанной системы Ducati Desmodromic
В 1954 году Ducati выпускали мотоциклы небольшого объема для удовлетворения потребностей послевоенной Италии. В то же время генеральный директор Ducati, Джузеппе Монтано, серьезно задумался над вопросом, что участие в гонках могло бы увеличить продажи компании.

Монтано нашел Фабио Тальони (тогда молодой и талантливый инженер) и сказал ему: «Я знаю о Вашем таланте, и я нужен Вам. Если Вы построите 100 мотоциклов для победы в «Tour of Italy», Ducati останется на плаву, потому что у меня денег ровно на один месяц зарплат. В противном случае мы закрываемся и расходимся по домам».

Довольно печальное начало того, что, в конечном счете, приведет к разработке клапанной системы Desmodromic.

Фабио Тальони оказался бойцом и начал заниматься экспериментами, пытаясь найти пути увеличения мощности маленьких итальянских двигателей. Была большая проблема. Промышленность того времени не могла обеспечить качественными клапанными пружинами, которые могли бы работать на высоких оборотах. Дело в том, что клапан не успевал закрываться или открываться в такт ходу поршня. Кроме того, пружины имели ограниченный срок службы, из-за чего двигатели выходили из строя.

Фабио Тальони подумал и решил, что кулачки могли бы избежать врожденных проблем пружин и выдерживать высокие обороты двигателя. Таким образом, Дукати начали производство прототипа механизма Desmodromic (в переводе «управляемое движение»), который основывался на выпускных клапанах с кулачковым приводом. К своему удивлению инженеры Ducati обнаружили, что данная конструкция обеспечивает лучшее сгорание топлива и более высокий крутящий момент на низких оборотах двигателя.

За все годы механизм «Desmodromic» остается конкурентоспособным даже в наши дни, о чем свидетельствуют мотоциклы Ducati в MotoGP и WSBK. Кроме того, система Desmodromic обеспечивает эффективный впуск/выпуск выхлопных газов, ограничивая прорыв газов неиспользованного топлива в атмосферу. В действительности система разрабатывалась в стремлениях к высоким рабочим характеристикам, но получилось так, что и окружающая среда забыта не была.

Клапанный механизм

  Система привода клапанов газораспределительного механизма

В зависимости от расположения клапанов относительно цилиндров двигатели делятся на верхнеклапанные (с их расположением в головке цилиндров) и нижнеклапанные. Для отечественных автомобилей нижнеклапанные двигатели применялись в моделях 1940-60 гг.

Их основные недостатки: меньший коэффициент наполнения, ограниченная степень сжатия.

У верхнеклапанных автомобильных двигателей с номинальной частотой вращения до 5000-5500 об/мин распределительный вал устанавливался в блоке цилиндров (нижнее расположение) или в картере в развале между цилиндрами. Привод клапанов производился толкателями, штангами и коромыслами.

Недостаток такого привода: повышенная масса поступательно движущихся частей, возникновение колебаний в системе привода. Все это ограничивало максимально допустимую частоту вращения. Поэтому распределительные валы современных высокооборотных двигателей легковых автомобилей располагаются в головках цилиндров. Привод распределительного вала (или двух, а иногда и четырех валов и пяти) осуществляется шестернями, цепью, зубчатым ремнем.

Привод шестернями применяется преимущественно в старых моделях двигателей при расположении распределительного вала в блоке цилиндров или в двигателях с V-образным расположением цилиндров.

Основные недостатки: усложнение конструкции, увеличение момента инерции, высокий уровень шума, особенно после большого пробега. Для снижения уровня шума шестерню распределительного вала выполняют из пластмассы. Зацепление делается с косым зубом и по возможности с малым модулем.

На большинстве автомобильных двигателей используется привод одной или несколькими однорядными или двухрядными втулочно-роликовыми цепями или зубчатыми ремнями. Привод цепью более надежный, хотя и несколько более шумный, чем привод зубатым ремнем. Конструкция двигателя с приводом зубчатым ремнем упрощается, т.к. не требуется смазки и появляется возможность использования его для привода внешних агрегатов (насоса охлаждающей жидкости, генератора компрессора кондиционера и др.). Несмотря на использование в зубчатых ремнях синтетических материалов со стекловолоконным или проволочным кордом, недостатком привода зубчатым ремнем, является необходимость менять ремни через заданный пробег (обычно 50-100 тыс. км). При износе сальника распределительного вала масло попадает на зубчатый ремень, что приводит к его выходу из строя. Кроме того, бывают случаи обрыва ремня из-за попадания в привод посторонних предметов.

Системы привода распределительного вала (валов) зубчатым ремнем или цепью оснащаются натяжителем с механическим или гидравлическим приводом для компенсации производственных отклонений и износа в процессе эксплуатации. Натяжители цепей выполняются в виде пластмассового башмака или с натяжными звездочками или роликами. С цепью предотвращения колебаний на участках ведущих участков цепи устанавливаются успокоители, как правило, из пластмассы.

В зависимости от количества клапанов и их расположения выбирается конструкция системы привода. При однорядном параллельном расположении клапанов их привод осуществляется непосредственно через толкатель, либо рычаг (рокер). При двухрядном расположении клапанов и одном распределительном вале привод клапанов выполняется обычно при помощи коромысел. Для повышения наполнения в широком диапазоне частот вращения коленчатого вала двигатели оснащаются системами с изменяемыми фазами газораспределения (в основном с изменением фаз впускного клапана).

Существуют следующие способы изменения фаз газораспределения:

Система управления газораспределением с изменением длины набегающей ветви ремня: 1,4 — зубчатые шестерни; 2 — зубчатые звездочки; 3 — зубчатый ремень с натяжной звездочкой, изменяющей длину ведущего участка цепи

— при помощи муфты с винтовыми шлицами или зубьями, связанной с ведомой звездочкой распределительного вала;
— при помощи муфты с роторным механизмом, поворачивающим распределительный вал относительно ведомой звездочки;
— трехрокерным механизмом (Honda), позволяющим изменять продолжительность открытия клапана, с отключаемым рокером.

Существуют механизмы для изменения высоты подъема клапана. Оригинальный механизм привода создан фирмой БМВ у 4-х и 8-ми цилиндровых двигателей для регулирования фаз газораспределения, высоты подъема впускных клапанов, а также длины впускных каналов.


Схема управления фазами газораспределения, высотой подъема впускных клапанов и длиной впускных каналов на двигателе BMW Walvetronic

При повороте электромотором эксцентрикового вала изменяется угол наклона нижней рабочей поверхности промежуточного рычага. При набегании кулачка на средний ролик этого рычага изменяется ход рокера и соответственно, ход клапана. Снижение наполнения цилиндров и соответственно, мощности двигателя, достигается уменьшением высоты подъема впускных клапанов от 9,7 мм до необходимой величины (0,5-2,0 мм на малых нагрузках и холостом ходу). При малой высоте подъема клапана, кроме снижения потерь на газообмен, повышаются скорости прохождения смеси через клапанную щель до критических. Это улучшает смесеобразование, снижаются механические потери на привод клапанного механизма, шум двигателя, износ деталей. В случае регулирования мощности высотой подъема клапана нет затрат времени на заполнение ресивера и впускных патрубков, а соответственно, ошибок в показаниях датчика расхода воздуха в начальный период разгона автомобиля. Время срабатывания механизма — 300 мс. Получаемый эффект по экономии расхода топлива достигает 14%, кроме того, удается обеспечить выполнение перспективных норм токсичности Евро-4. Существенно улучшаются и динамические качества автомобиля.

  Профиль кулачка и величина теплового зазора для предотвращения стука выбираются таким образом, чтобы момент касания кулачка толкателя или рычага привода при любом тепловом режиме соответствовал зоне минимальных ускорении. На тихоходных двигателях профиль кулачка выполнялся по двум или трем дугам окружности. Для современных быстроходных двигателей существуют методики выбора безударного профиля кулачка с учетом обеспечения надежной работы газораспределительного механизма при максимальных частотах вращения. В некоторых двигателях кулачки распредвалов делаются с несимметричным профилем.

  Клапанные пружины выбираются расчетом так, чтобы в зоне отрицательных ускорений обеспечивали необходимый запас суммарных усилий пружин для безопасной работы клапанного механизма. Стремление повысить мощностные показатели двигателей ограничивалось возможностями привода клапанного механизма. Для расширения этих возможностей требовалось увеличение усилия клапанных пружин, что приводило к повышенному износу пар трения и увеличению механических потерь. Кроме того, в результате резонансных явлений в клапанных пружинах нарушалась работа всего механизма.

После посадки в седло клапан один или два раза подпрыгивает, что резко снижает наполнение цилиндров. Для смещения зоны резонансных колебаний пружины в сторону повышенных частот вращения они выполняются с переменным шагом или внутри основной пружины устанавливается пружина из плоской ленты, выполняющая функцию демпфера. Чтобы обеспечить работу системы газораспределения без клапанных пружин, разработаны различные варианты систем принудительного открытия и закрытия клапанов, так называемые десмодромные механизмы. Открытие и закрытие клапана производится со значительно большими ускорениями, что позволяет значительно увеличить «время-сечение» открытого состояния клапана и, следовательно, повысить наполнение на высоких частотах вращения. При работе десмодромного механизма двигателя Mercedes-Benz на режиме 10 ООО об./мин максимальные положительные ускорения клапана достигают значений 17 ООО м/с2, а отрицательные — 8000 м/с2, что в пять-девять раз больше

Десмодромный механизм газораспределения двигателя Mercedes-Benz тина GP:


соответствующих ускорений у обычных газораспределительных механизмов. Существуют и другие варианты десмодромных механизмов. Основной проблемой при создании этих механизмов является обеспечение компенсации зазоров, образующихся при износе, что ограничивает применение их для автомобилей массового производства.

Регулирование теплового зазора.

В системе привода клапана должен сохраняться так называемый тепловой зазор. При максимальной мощности температура выпускного клапана доходит до 750-850 "С, в то время как температура остальных деталей головки цилиндра двигателей с жидкостным охлаждением не превышает 100-120 °С. Стержень клапана удлиняется на большую величину, чем остальные детали головки, при этом тепловой зазор уменьшается. Если при перегреве клапана (например, из за позднего зажигания), износе седла и фаски клапана или неправильной регулировке зазора нарушится герметичность и прижатие клапана к седлу, то произойдет прогар клапана. Профиль кулачка и величина теплового зазора для предотвращения стука выбираются таким образом, что бы момент касания кулачка толкателя или рычага привода при любом тепловом режиме соответствовал зоне минимальных ускорений.

На практике тепловой зазор двигателей с жидкостным охлаждением определяется при помощи плоского щупа. При этом приходится учитывать конструктивные особенности двигателя, износ контактирующих поверхностей и др. Наименьшую массу поступательно движущихся частей удается добиться в приводе клапана от кулачка непосредственно через толкатель. В этом случае регулирование теплового зазора осуществляется путем замены цилиндрических вставок для всех клапанов. При износе контактных поверхностей фактический тепловой зазор получается больше замеренного плоским щупом. Поэтому наиболее точным способом является замер зазора специальным приспособлением с использованием индикатора.
Для исключения необходимости проверки и реагирования теплового зазора, а также предотвращения прогара клапана при износе седел и фасок клапанов большинство современных двигателей оборудуются системой автоматического регулировании теплового зазора. В случае привода клапана при помощи рычага в его опоре делается гидравлический регулируемый элемент. В двигателях с приводом через толкатель его выполняют с гидравлическим компенсатором теплового зазора (гидротолкатель). Гидротолкатели применяются на двигателях с нижним расположением распредвала со штанговым приводом и на двигателях с непосредственным приводом от распределительного вала. Масло из системы смазки подается сначала во внутреннюю полость толкателя, а затем через шариковый или пластинчатый клапан во внутреннюю полость между наружным и внутренним плунжером. Под давлением масла толкатель прижимается к кулачку. При набегании кулачка на толкатель внутри плунжерной пары создастся высокое давление, обеспечивая открытие клапана. После длительной остановки двигателя масло из гидротолкателя открытого клапана вытекает, что после пуска приводит к стуку клапанов в течение нескольких секунд. При сильном износе плунжерных пар в гидравлических толкателях или упорах рычага привода время работы со стуком клапанов увеличивается. В случае попадания в масло воздуха (при вспенивании масла) находящийся внутри толкателя воздух выдавливается и не нарушает работу толкателя.

В двигателях с приводом клапана при помощи рычага автоматическое реагирование теплового зазора осуществляется гидравлическим упором. Принцип его работы аналогичен гидротолкателю. Масто из системы смазки заполняет внутреннюю полость гидравлического упора, прижимая рычаг к кулачку. При применении гидротолкателей или гидравлических упоров тепловой зазор достигается за счет незначительной утечки масла через зазор плунжерной пары. В системах газораспределения с гидротолкателями или гидравлическими упорами требуется применение масел с высокой степенью очистки и с пологими температурными кривыми вязкости. Читать далее >>>

  Увеличение мощности тюнинг двигателя    на главную разгон до 100        0-100 км/ч    0-100  

Газораспределительный механизм DOHC

Механизм газораспределения DOHC или как его еще называют ГРМ DOHC или TwinCam, считается видом газораспределительной системы автомобильных двигателей внутреннего сгорания.

В данной статье размещены ответы на такие довольно распространенные вопросы:

  1. Что собой представляет газораспределительный механизм TwinCam?
  2. Конструкция ГРМ DOHC;
  3. Назначение газораспределительного механизма DOHC;
  4. В чем заключается принцип действия ГРМ?
  5. Часто встречаемые неисправности механизма газораспределения TwinCam и методы их решения.
Газораспределительный механизм DohcГазораспределительный механизм Dohc

Основная информация о ГРМ TwinCam

Механизм газораспределения DOHC является одним из типов газораспределительных систем автомобильных двигателей внутреннего сгорания. DOHC расшифровывается DoubleOverHeadCamshaft, что дословно переводится как два верхних распределительных валика. Вначале поговорим об устройстве газораспределительного механизма. Механизм газораспределения имеет такие основные элементы:

  1. Распределительный валик;
  2. Клапанный механизм;
  3. Механизм привода распределительного валика.

Газораспределительный механизм оснащен такими основным элементами:

  1. Клапаны. С помощью клапанов выполняется периодическое открывание и закрывание отверстий впускного и выпускного клапанов, которое напрямую зависит от очередности функционирования автомобильного двигателя и расположения поршня в цилиндре;
  2. Толкатели. Благодаря толкателям выполняется передача усилий от кулаков распредвала к каждой штанге. Для того чтобы толкатель изнашивался равномерно они находятся в постоянном движении вокруг себя, а выполняется это благодаря выпуклой поверхности нижних головок и скошенной поверхности распределительного валика;
  3. Распредвал. Он дает возможность открывания и закрывания клапанов ГРМ в установленной очередности, которая согласовывается с функционированием каждого цилиндра двигателя автомобиля;
  4. Штанги. С их помощью обеспечивается передача усилий из толкателя к коромыслу.
  5. Коромысло. Обеспечивают передачу усилия от штанги к клапану.

Схема ГРМ DOHC двигателей автомобиля марки Тойота оснащается четырьмя или пятью клапанами на каждый цилиндр. Каждый распределительный валик заставляет функционировать соответствующую ему пару клапанов, а происходит это благодаря толкателям. Представленный механизм газораспределения является усовершенствованным вариантом механизма SOHC, только на месте одного распредвала в основе блока каждого цилиндра находится 2 распредвала. Такой тип конструкции значительно понижает инерцию всех клапанов, благодаря отсутствию коромысла клапанов, а это дает возможность достижения не меленьких оборотов в сравнении с предыдущим механизмом.

К тому же, представленный механизм дает возможность проектирования немаленького угла между парой клапанов, а это позволяет производить большой поток воздуха во все цилиндры на больших оборотах.

Каждый из распределительных валиков начинает передвигаться при помощи цепки или же зубчатого ремешка. В последнее время автомобиль марки Тойота начал оснащаться однорядной цепкой, а не зубчатым ремнем. Однорядной цепкой называется современное веяние двигателей автомобиля марки Тойота. Большим достоинством данной цепки является ее надежность, потому как она не требует такой частой замены как ремень. Но цепка создает дополнительный шум, а ее замена обойдется вам в кругленькую сумму, так как одновременно придется проводить замену натяжителя и успокоителя.

К достоинствам газораспределительного механизма DOHC относятся:

  • Имеется возможность раскручивания коленвала до высоких оборотов, а это дает возможность снятия с автомобильного двигателя большую мощность;
  • Достаточно легко проводится процесс компоновки механизмов газораспределения со специальным механизмом перемены фаз распределения газа.

К недостаткам представленной системы относятся:

  • Механизм оснащен большим количеством деталей;
  • Большая стоимость;
  • Низкий уровень надежности;
  • Сложный ремонт.

Часто встречаемые неисправности механизма газораспределения TwinCam

Для начала давайте рассмотрим внешние признаки поломок механизма распределения газа. Понизилась компрессия, появились хлопки впускного и выпускного трубопроводов, уменьшение мощности автомобильного двигателя и стуки металла. Все перечисленные признаки являются свидетельством того, что клапаны плохо прилегают к седлам, а это обычно происходит из-за накопления гари на седлах и клапанах. Также данные признаки могут свидетельствовать о поломке пружин клапана, заедании стойки клапанов во втулке или же в случае отсутствия зазоров между стойкой клапана и рычагом.

Еще одной причиной может быть неполное открытие клапана, а это в свою очередь происходит из-за немаленького теплового зазора или же поломки гидрокомпенсаторов.

Также могут износиться шестеренки распределительного или коленчатого валика, направляющие втулки клапана, оси и втулки коромысла, увеличение смещения оси распределительного валика.

Процесс замены ремня в газораспределительном механизме

В процессе снятия изношенного ремня и установления вместо него нового может легко измениться взаиморасположение коленвала и распредвала. В таком случае сменяются фазы распределения газа автомобильного двигателя, а это может привести к каким-либо нарушениям функционирования, даже доходя до полной поломки. Пометки, которые располагаются на шестеренках механизма привода, выполняют функцию визуального контролирования настроек газораспределительного механизма. Поэтому после снятия старого ремня нужно совместить пометки шестеренок коленвала и распредвала с прорезами, которые находятся в кожухе механизма привода. Представленное действие просто необходимо для установления, так называемого условного нуля, так как именно с него начинается функционирование автомобильного двигателя. После выполнения данного действия необходимо осторожно установить дополнительный ремень, при этом старайтесь не сместить пометки на шестеренках.

Дальше нужно осмотреть и отрегулировать усилия натяжного ролика, а предназначается данный узел для удержания ремня на шестеренках механизма привода. Проверка на правильность проведения регулирования ролика проводится при помощи поворачивания ремешка.

Если вам удастся провернуть ремешок на 90⁰, то механизм отрегулирован правильно. В противном случае есть два варианта либо он перетянут, либо недотянут:

  • Если вам удалось провернуть ремень большой угол, то он недотянут;
  • Если ремень проворачивается на маленький угол, то он перетянут.

Обратите внимание на то, что ремень ни в коем случае нельзя брать руками в масле, так как это приведет к проскальзыванию механизма привода на шестеренках.

Отправить ответ

avatar
  Подписаться  
Уведомление о