Система gdi: 403 — Доступ запрещён – Система непосредственного впрыска топлива GDI: принцип работы

Содержание

Что такое система впрыска двигателя GDI и как работает

Чтобы объяснить принцип работы двигателя GDI с непосредственным впрыском необходимо для начала рассмотреть теорию работы двигателей.

Теория работы двигателя
Чтобы топливо сгорело, нужен воздух. Но надо смешать с топливом столько воздуха, сколько нужно для полного сгорания. Такое количество воздуха называется стехиометрическим. Например, для бензина оптимальный состав топливной смеси выражается соотношением 14,7:1, то есть на 1 грамм бензина нужно 14,7 грамма воздуха. Смесь, в которой воздуха больше, чем нужно — называется бедной, а та, в которой воздуха меньше, чем нужно (то есть больше топлива) — называется богатой.

Слишком бедную смесь не всегда удается поджечь, при работе на богатой смеси несгоревшее топливо бесполезно «вылетает в трубу».

Воздух нужен не только для сгорания. Чем выше давление в цилиндре перед воспламенением смеси, тем больше отдача двигателя. Выгодно, чтобы больше воздуха попало в цилиндр на такте впуска: тем больше потом будет давление. Давайте разбираться, почему дизель экономичнее.

Вспомним, как работает ДВС. У бензинового двигателя на такте впуска смесь воздуха и топлива поступает в цилиндр, затем она сжимается и поджигается искрой. У дизеля на такте впуска в цилиндр поступает только воздух, который сжимается поршнем под большим давлением и от этого еще и нагревается. К концу сжатия в цилиндр впрыскивается топливо, которое при высоких давлении и температуре самовоспламеняется. Давление в цилиндре дизеля намного выше, чем в цилиндре бензинового двигателя: для дизеля нормальная степень сжатия — 18, а у бензиновых — едва достигает 12. А выше давление в цилиндре — выше и эффективность.

А если поднять степень сжатия в бензиновом двигателе? Пробовали. Но выше 12 не получается. Потому что есть такие явления, как детонация и калильное зажигание.

Детонация — очень быстрое сгорание топлива в точках, удаленных от свечи, сопровождается резким местным перегревом и перегрузкой деталей двигателя. Внешний признак детонации — стук.

Калильное зажигание — преждевременное (до появления искры) воспламенение смеси от перегретых деталей камеры сгорания.

Длительная работа с детонацией и калильным зажиганием недопустима: мотор быстро выйдет из строя. Детонацию и калильное зажигание провоцируют высокая температура и высокое давление. Во избежание детонации моторы с высокой степенью сжатия «кормят» высокооктановым бензином (АИ-98), но выше степени сжатия 12 его «не хватает».

Если хотим сделать бензиновый двигатель экономичным, «эластичным» и при этом более мощным, то должны избавиться от детонации и научить «питаться» бедной смесью. Вот если бы топливо впрыскивалось непосредственно в цилиндр…

Как работает двигатель GDI
Двигатель GDI напоминает по конструкции и обычный бензиновый, и дизель. В каждом цилиндре присутствует и свеча зажигания, и форсунка, а топливо подается насосом высокого давления под давлением 5 МПа. Форсунка обеспечивает два различных режима впрыскивания топлива. В работе GDI различаются три возможных режима в зависимости от режима движения.
Работа на сверх бедных смесях.
Этот режим используется при малых нагрузках: при спокойной городской езде и загородном движении на скоростях до 120 км/ч. В этом случае топливо подается в цилиндр практически как в дизеле — в конце такта сжатия.

В результате наиболее обогащенное топливом облако оказывается непосредственно около свечи зажигания и благополучно воспламеняется, поджигая затем бедную смесь. В результате двигатель устойчиво работает даже при общем соотношении воздуха и топлива в цилиндре 40:1.


Работа на стехиометрической смеси. Этот режим используется при интенсивной городской езде, высокоскоростном загородном движении и обгонах. При стехиометрическом составе смеси с воспламенением никаких проблем не возникает. Впрыск топлива осуществляется в процессе такта впуска. Топливо впрыскивается коническим факелом, распыляется по всему цилиндру и, испаряясь, охлаждает при этом воздух в цилиндре. Благодаря охлаждению снижается вероятность детонации и калильного зажигания.

Еще один режим реализует система управления GDI. Он позволяет повысить момент двигателя в том случае, когда двигаясь на малых оборотах, резко нажимается педаль акселератора. Если двигатель работает на малых оборотах, а в него вдруг подается обогащенная смесь, вероятность детонации возрастает. Поэтому впрыск осуществляется в два этапа.

Небольшое количество топлива впрыскивается в цилиндр на такте впуска и охлаждает воздух в цилиндре. При этом цилиндр заполняется сверх бедной смесью (примерно 60:1), в которой детонационные процессы не происходят. Затем, в конце такта сжатия, подается струя топлива, которая доводит соотношение воздуха и топлива в цилиндре до «богатого» 12:1. А на детонацию времени не остается.

Что в итоге? Степень сжатия удалось поднять до 12—12,5, двигатель устойчиво работает на бедной смеси. По сравнению с бензиновым двигателем, GDI расходует на 10% меньше топлива, выдает на 10% больше мощности и экологичнее на 20%.

Система непосредственного впрыска топлива в бензиновых двигателях — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 декабря 2018; проверки требуют 4 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 декабря 2018; проверки требуют 4 правки.

Система непосредственного впрыска топлива (СНВТ) (Gasoline Direct Injection (GDI)) — инжекторная система подачи топлива для бензиновых двигателей внутреннего сгорания с непосредственным впрыском топлива, у которой форсунки расположены в головке блока цилиндров и впрыск топлива происходит непосредственно в цилиндры. Топливо подается под большим давлением в камеру сгорания каждого цилиндра в противоположность стандартной системе распределённого впрыска топлива, где впрыск производится во впускной коллектор.

Такие двигатели более экономичны (до 20 % экономии[1]), отвечают более высоким экологическим стандартам, однако и более требовательны к качеству топлива.

Аббревиатура GDI подразумевает систему непосредственного впрыска на двигателях Mitsubishi. Это произошло потому, что впервые система непосредственного впрыска была применена на двигателе GDI, устанавливаемом на автомобили компании Mitsubishi.[1] Это утверждение верно лишь частично. Так, первый серийный двигатель с непосредственным впрыском был Daimler-Benz DB 601 для Messerschmitt Bf.109E. Впервые непосредственный впрыск топлива на автомобиле Mercedes W196, на котором знаменитый Фанхио выиграл сезоны 54 и 55 года. Mitsubishi первыми применила электронно-управляемый непосредственный впрыск что позволило применить на некоторых режимах суперобедненную смесь.

Согласно SAE J1930, система непосредственного впрыска имеет наименование DFI, direct fuel injection (рус. «непосредственный впрыск топлива»). В то же время, производители двигателей часто дают системам непосредственного впрыска собственные торговые наименования, например:

GDI состоит из следующих составляющих:

Система непосредственного впрыска топлива GDI: что это такое и как работает?

 

Система непосредственного впрыска топлива применяется на бензиновых двигателях последних поколений с целью повышения их экономичности и увеличения мощности. Она предполагает впрыск бензина напрямую в камеры сгорания цилиндров, где и происходит его смешение с воздухом и образование топливовоздушной смеси. Первыми двигателями, которые были оснащены такой системой впрыска, стали моторы GDI (Mitsubishi). Аббревиатура GDI — расшифровывается как «Gasoline Direct Injection», что дословно переводится как «непосредственный впрыск бензина».

Устройство и принцип действия системы GDI

В наши дни системы, аналогичные Gasoline Direct Injection, используют и другие производители автомобилей, обозначая данную технологию TFSI (Audi),  FSI или TSI (Volkswagen), JIS (Toyota), CGI  (Mercedes), HPI (BMW). Принципиальными отличиями этих систем являются рабочее давление, конструкция и расположение топливных форсунок.

Конструктивные особенности двигателей GDI

Система питания воздухом двигателя GDI Классическая система непосредственного впрыска топлива конструктивно состоит из следующих элементов: Топливный насос высокого давления (ТНВД). Для корректной работы системы (создания тонкого распыливания) бензин в камеру сгорания должен подаваться под высоким давлением (аналогично дизельным моторам) в пределах 5…12 МПа. Электрический топливный насос низкого давления. Подает топливо из бензобака к ТНВД под давлением 0,3…0,5 МПа.

Датчик низкого давления. Фиксирует уровень давления, созданного электрическим насосом. Форсунки высокого давления. Осуществляют впрыск топлива в цилиндр. Оснащены вихревыми распылителями, позволяющими создавать требуемую форму топливного факела. Поршень. Имеет особую форму с выемкой, которая предназначена для перенаправления горючей смеси к свече зажигания двигателя.

Впускные каналы. Имеют вертикальную конструкцию, благодаря чему возникает обратный вихрь (закручен в противоположную сторону по сравнению с другими типами двигателей), выполняющий функцию направления смеси к свече зажигания и обеспечивающий лучшее наполнение камеры сгорания воздухом. Датчик высокого давления. Располагается в топливной рампе и предназначен для передачи информации в электронный блок управления, который изменяет уровень давления в зависимости от актуальных режимов работы двигателя.

Отличия моторов прямого впрыска топлива GDI. Особенности работы двигателей GDI

По факту мы имеем некий симбиоз дизельного и бензинового двигателей в одном и каждый производитель именует такую систему по своему. GDI двигатели у Mitsubishi, FSI ставит обозначение VW, D4 обозначение Toyota. От дизеля GDI унаследовал систему впрыска и ТНВД, от бензинового двигателя сам тип топлива и свечи зажигания. Родоначальником моторов GDI стала компания Mitsubishi, когда в 1995 году был представлен Mitsubishi Galant 1.8 GDI. Сегодняшний двигатель с непосредственным впрыском это сложная система механизмов и электронных блоков.

Двигатель с непосредственным впрыском топлива  явился миру гораздо раньше — в 50-х годах такие моторы использовал Daimler-Benz на своих гоночных машинах.

Различия (разновидности) двигателей GDI. Марки автомобилей, где используется GDI

Предпосылки создания и массового перехода большинства ведущих автопроизводителей на системы впрыска, аналогичных GDI, были достаточно предсказуемы. Экологические нормы, требующие усовершенствования систем выхлопа отработанных газов, а так же глобальная задача по созданию экономичных двигателей. В двигателях GDI реализованы несколько типов смесеобразования топливовоздушной смеси, это позволило выполнить задачи по экономии топлива, более полному сгоранию смеси и дополнительно увеличить мощность.  В совокупности такой двигатель получился благодаря доработанной системе прямого впрыска, где не малую роль играет электронная начинка.  Блок управлением двигателя, через датчики, раскиданные по системе, оперативно реагирует на малейшие изменения поведения автомобиля и подстраивает работу топливной системы под необходимые требования водителя

 

Преимущества (плюсы) двигателей GDI

 Особенностью двигателей с непосредственным впрыском является возможность работы в нескольких видах смесеобразования. Это является неоспоримым плюсом, так как многообразие в смесеобразовании дает максимальную эффективность использования топлива. При исправно работающей системе непосредственного впрыска мы получим экономию топлива за счет режима работы на сверхобедненной смеси, причем без потери мощности. В двигателях GDI увеличенная степень сжатия топливовоздушной смеси, это помогает избежать калильного зажигания и детонации, а таким образом увеличивается ресурс. Так же в положительные моменты двигателя с непосредственным впрыском нужно отнести существенное снижение выброса в атмосферу углекислого газа и других вредных веществ, а это достигается за счет многослойного смесеобразования, в свою очередь дающее более полное сгорание смеси, что дополнительно влияет на мощность двигателя.

Система GDI в результате работы обеспечивает несколько видов смесеобразования:

— послойное;
— стехиометрическое гомогенное ;
— гомогенное.
Такое многообразие делает работу двигателя экономичным, лучшее качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов.

Недостатки (минусы) двигателей GDI

Описание двигателей GDI было бы не полным, без упоминания отрицательных моментах эксплуатации. Главный минус GDI связан со сложностью самой системы впуска и подачи топлива. В таком варианте впрыска, двигатель GDI становится крайне чувствительным к качеству используемого топлива. В итоге проблема закоксовывания форсунок становится актуальной для водителя, потеря мощности и увеличение расхода топлива никого не обрадует. Так же в минусы можно отнести сложность обслуживания и стоимость ремонта, замены деталей и агрегатов топливной системы, поэтому важным моментом является контроль за состоянием топливной системы автомобиля.

Да, в обслуживании двигатель GDI дороже, но рабочие характеристики перекрывают этот минус. Тем более, есть средства помогающие повысить ресурс капризных деталей и узлов.

Профилактика неисправностей моторов GDI

Профилактика — это простое решение для владельца автомобиля с системой непосредственного впрыска GDI или аналогичными системами. Как мы уже писали выше, качество топлива будет играть основную роль. Понятно, что без лабораторных исследований судить о качестве топлива невозможно,  поэтому в качестве профилактических мер и защиты топливной системы от возникающих проблем могут помочь топливные присадки. Компания Liqui Moly один из мировых лидеров в производстве автохимии рекомендует, для поддержания необходимого уровня смазывающих и очищающих присадок в используемом топливе применять Langzeit Injection Reiniger арт. 7568. Постоянное применение присадки значительно снизит риск возникновения поломок связанных с топливом, пакеты присадок, поднимающие смазывающие свойства топлива надежно защитят топливную аппаратуру от скорого износа. Для лечения и профилактики загрязнений форсунок так же есть надежное средство, арт. 7554 Очиститель систем непосредственного впрыска топлива Direkt Injection Reiniger. Заменяет стендовую очистку форсунок, работает по нагару, смолам и чистит камеру сгорания. Немаловажный момент, что топливные присадки Liqui Moly начинают работать в топливной системе при повышении температуры, а в баке происходит только смешивание с топливом.

Стоит ли покупать автомобили с двигателями GDI

При должном подходе и своевременном обслуживании владелец автомобиля с системой GDI получает комфортный в управлении автомобиль с высокой тягой, мощностью и хорошей экономией топлива. И как показывают продажи таких автомобилей, на дорогах встречаться они будут чаще.

Насос системы охлаждения двигателя (помпы): устройство виды и принцип работы,фото
Топливный насос высокого давления (ТНВД): что это такое и для чего он нужен,виды,фото
Керамические колодки: плюсы и минусы,какие выбрать,отзывы,фото
ЭГУР Servotronic: что это такое и как он работает?

ПОХОЖИЕ СТАТЬИ:

  • Тойота хайлендер: описание,технические характеристики,безопасность,комплектация,фото,видео
  • 2016 Германия: наиболее часто украденные бренды и модели автомобилей
  • volkswagen passat b3: обзор,описание,фото,видео,характеристика .
  • bmw m5 f10 описание дизайн технические характеристики фото видео
  • Автомобильный бензин АИ 95 или АИ 92: какой лучше для автомобиля?
  • HanTeng Red 01 — интересная электрическая концепция, несмотря на решетку для терки сыра
  • Volkswagen Amarok 2017 года фото видео обзор описание комплектация.
  • Volkswagen c coupe gte: обзор,описание,фото,видео,комплектация.
  • Mercedes GLE: обзор,двигатели,интерьер,внешний вид,цена,фото,видео.
  • Статистика продаж новых автомобилей в 2017 году в Германии.
  • Какая охлаждающая жидкость лучше всего подходит для немецкого автомобиля?
  • Фольксваген каравелла Т6 2016 комплектации и цены обзор описание характеристики фото видео.
  • Honda N-WGN 2020 года — последний японский автомобиль Kei
  • Бмв е39: обзор,описание,фото,видео,комплектация,характеристики
  • Бмв е90: описание,обзор,фото,видео,комплектация,характеристики

Что такое система впрыска GDI. Особенности и принцип работы

ЧТО ТАКОЕ СИСТЕМА ВПРЫСКА GDI. ОСОБЕННОСТИ И ПРИНЦИП РАБОТЫ

Добрый день, сегодня мы узнаем, что называется автомобильной системой впрыска топлива с технологией GDI (непосредственный впрыск топлива), для чего она нужна и как осуществляется ее функционирование. Кроме того, расскажем про основные особенности технологии, каким образом работает топливный насос в системе, чем впрыск топлива такого типа отличается от других и какая польза или вред автомобильному двигателю от GDI. В заключении мы поговорим, о том какие задачи выполняет система впрыска GDI в силовой установке транспортного средства, из каких узлов она состоит и каковы ее конструкторские особенности.


Для того, чтобы понять, как функционирует автомобильная система с технологией непосредственного впрыска топлива (GDI), необходимо знать ее конструкторские особенности, из каких элементов она состоит, а также какие функции и задачи выполняет в силовой установке транспортного средства. Данные вопросы мы и обсудим в нашем рассказе, чтобы получить исчерпывающее представление о принципе работы автомобильной топливной системы с непосредственным впрыском. Кроме того, рассмотрим часто задаваемый вопрос многими автовладельцами: «Чем отличается система с непосредственным впрыском топлива GDI от классических топливных технологий?».


 Что такое система впрыска FSI. Особенности и принцип работы
 Что такое топливный насос. Функции и принцип работы

1. Понятие, особенности и принцип работы системы впрыска топлива GDI 

Двигатель оснащенный топливной системой с технологией впрыска GDI (Gasoline Direct Injection) — это бензиновая силовая установка с прямым или непосредственным впрыском топлива. Силовые установки с аббревиатурой GDI производятся, как правило, только японскими и корейскими автопроизводителями, такими как Mitsubishi, Toyota, Nissan, Kia и Huyndai, а также компанией Bosch (только топливные узлы). Примером современного двигателя с технологией прямого впрыска топлива может служить мотор с маркировкой T-GDI от компании Киа, который устанавливается на Киа Спортейдж 4-го поколения с объемом двигателя 1.6 литра с турбонагнетателем.


Если погрузится в история двигателестроения, то идея постройки силовой установки с прямым впрыском топлива в рабочую область цилиндров появилась еще в конце 80-х годов 20 века, однако массовый вариант GDI впервые был представлен публике только в середине 90-х годов, все того же века. Двигатели с технологией прямого впрыска, как правило, чаще всего встречаются на автомобилях марки Митсубиши, которая в какой то степени стала первопроходцем в этом направлении. Самой первой моделью на планете с таким мотором стала модель Митсубиши Галант 1996 модельного года, которая получила на то время атмосферную бензиновую силовую установку с объемом в 1.8 литра.



Система прямого впрыска топлива или GDI применяется в основном только на бензиновых силовых установках, причем последних поколений с целью повышения их экономичности, а также увеличения мощности. Такая система, как мы отметили ранее предполагает непосредственный впрыск бензина напрямую в камеры сгорания цилиндров двигателя. В дальнейшем в камерах сгорания происходит смешение топлива с воздухом и образование топливно-воздушной смеси.

Отличительной особенностью силовых установок с технологией прямого впрыска топлива GDI является наличие 2-ух насосов в топливной системы:


— стандартный электрический бензонасос, который располагается в топливном баке автомобиля;

топливный насос высокого давления или ТНВД с механическим приводом от двигателя.



Решение производителя применить в системе два бензонасоса является аналогом принципа подачи топлива в двигателе с дизельным типом действия. В силовых установках с прямым впрыском GDI, давление подачи топлива составляет в диапазоне от 45 до 50 бар, в то время, как в классических бензиновых моторах оно составляет в районе 3-5 бар

Двигатели с прямым впрыском имеют множество конструкторских различий, благодаря чему они делятся на 2 основных направления


силовые установки для потребления на внутреннем рынке;


силовые установки для экспорта в зарубежные страны.



Главными отличиями в конструкции таких моторов являются особенности исполнения топливного насоса высокого давления и устройство системы бензинового впрыска в камеры сгорания цилиндров. Например версии двигателей для Японии или Кореи имеют следующие 2 основных режима впрыска топлива прямого действия


Режим сверх бедной топливно-воздушной смеси: предполагает функционирование двигателя на смеси, которая имеет соотношение в диапазоне от 37 к 1 до 43 к 1, следовательно показатели означают количество воздуха к объему топлива. Такой режим работы поддерживается электронным блоком управления двигателем на умеренных скоростях до 125 километров в час, с учетом плавного разгона силовой установки, то есть без резких нажатий на педаль газа водителем. В этом режиме, система прямого впрыска топлива обеспечивает максимальный крутящий момент мотора. В процессе работы форсунки впрыскивают топливо в тот момент, когда поршень находится на такте сжатия и при этом еще не дошел до верхней мертвой точки двигателя. Подача горючего инжектором в данном случае осуществляется, как однородная струя и после которой образуется завихрение потока по часовой стрелке для оптимального смешивания с воздухом в камере цилиндра.



Режим стехиометрической топливно-воздушной смеси: предполагает стехиометрический состав смеси топлива, а также воздуха, который поступает в камеры цилиндра. Данный режим работы активизируется тогда, когда силовая установка находится под нагрузкой, например при движении на высокой скорости или буксирование прицепа, а также при езде в гору.


Кроме вышеописанных нюансов двигателей с системой впрыска GDI, их отличительной чертой еще является иная работа во время холостого хода и прогревания автомобиля. Электронный блок управления двигателем динамично производит изменение режимов сверх бедной топливно-воздушной смеси и стехиометрического режима во время работы силовой установки на холостых оборотах, при этом условно продувая цилиндры

Особенностью повышения холостых оборотов мотора в момент до 900-1000 оборотов в минуту является плавный переход между вышеописанными режимами. Такая смена режимов функционирования системы впрыска GDI в оптимальном варианте должна происходить в среднем 1 раз в 4 минуты. Справочно заметим, что все режимы переключаются под управлением электронного блока. Что касается комфорта водителя при смене режимов и изменений в работе силовой установки, то они почти не ощущаются.  



Относительно токсичности и выхлопов отработанных газов, двигатели с системой впрыска с технологий GDI оснащены специально разработанными катализаторами, которые функционируют на сильно обедненной топливно-воздушной смеси. В итоге уровень окислов азота в отработанных газах такой силовой установки укладывается в рамки экологических норм Евро-3. Отметим, что высокое содержание серы, которое часто содержится в бензине, довольно быстро выводит из строя и приводит к поломкам каталитический нейтрализатор.

2. Режимы функционирования силовой установки с топливной системой впрыска GDI

По своей конструкции двигатель с системой впрыска GDI почти ничем не отличается от бензинового и дизельного мотора. Справочно отметим, что в такой силовой установке, в каждом цилиндре имеется свеча зажигания и форсунка, а топливо направляется в камеры сгорания цилиндров насосом высокого давления (ТНВД) под давлением в 5 МегаПаскаль. Форсунки при этом обеспечивают 2 разных режима впрыскивания топлива.



Система прямого или непосредственного впрыска GDI, как мы описывали ранее функционирует в 2-ух основных режимах, в зависимости от динамики движения транспортного средства. Во-первых, функционирование на сверх бедных смесях, этот режим используется при небольших нагрузках и спокойной городской или загородной езде на скоростях до 120 километров в час. Топливо подается в камеры цилиндра примерно таким же образом, как в дизельных двигателях, в конце такта сжатия смеси. Однако система впрыска GDI в таком режиме разительно отличается от послойной системы FSI.

При первом режиме работы наиболее обогащенное топливом облако оказывается в области свечи зажигания и довольно быстро воспламеняется, поджигая при этом бедную или слабо обогащенную топливно-воздушную смесь, которая находится в камере сгорания цилиндра. В результате чего силовая установка оптимально функционирует даже при общем содержании топлива к воздуху в цилиндре в соотношении 1 к 40 соответственно.

Во-вторых, работа силовой установки на 2-ом режиме, под названием стехиометрическая смесь осуществляется при интенсивной езде и высокоскоростном загородном движении. При стехиометрический составе топливно-воздушной смеси воспламенение происходит без задержек и проблем. Впрыск в таком режиме происходит в процессе такта впуска. Топливо направляется в камеры цилиндров коническим факелом и далее просто распыляется, а затем испаряется, при этом охлаждает воздух в рабочей области узла двигателя. Благодаря охлаждению происходит уменьшение вероятности детонации и калильного зажигания.

В-третьих, у системы прямого впрыска GDI имеется еще один, 3-ий режим функционирования, который реализует непосредственно сама система управления. Этот режим позволяет повышать момент силовой установки в то случае, если мы двигаемся на небольших оборотах, при этом резко нажимая на педаль акселератора. Если мотор работает на малых оборотах, а в него резко подается обогащенная топливно-воздушная смесь, вероятность детонации резко повышается. Вот поэтому впрыск топлива в таком режиме происходит в 2 этапа.

В таком режиме небольшое количество топлива направляется в цилиндр на такте впуска и при этом производит охлаждение воздуха в рабочей области узла. В этот момент также происходит заполнение цилиндра сверх бедной топливно-воздушной смесью, в соотношении 50 к 1 (воздух к топливу), в которой процессы детонационного характера не происходят. После этого, в заключении такта сжатия, направляется струя топлива, которая обеспечивает доведение соотношения воздуха и топлива в камере сгорания цилиндра до обогащенного или в равного 10-12 к 1 (воздух к топливу). А на саму детонацию времени у системы в этом режиме просто не остается, потому она и не происходит совсем.


Видео обзор: «Что такое система впрыска GDI. Особенности и принцип работы»


В заключении отметим, что в целях профилактики на силовых установках с системой впрыска GDI рекомендуется производить регламентную замену свечей зажигания каждые 15-30 тысяч километров пробега, а также примерно 1 раз в 30 тысяч километров пробега делать очистку впускного коллектора от нагара и сажи на его стенках. Кроме того, периодически необходимо диагностировать состояние инжекторов, проверять качество распыления топлива и делать прочистку форсунок. Благодаря созданию двигателей с системой прямого впрыска GDI инженерам удалось поднять степень сжатия мотора до 12 пунктов в соотношение воздуха к топливу в смеси и при этом силовая установка без проблем способна работать на не обогащенной или бедной смеси. По сравнению с классическим бензиновым двигателем, моторы с GDI расходуют примерно на 9 процентов меньше топлива, выдают на 11 процентов больше мощности и в среднем на 25 процентов меньше вырабатывают отработанных газов.

БОЛЬШОЕ СПАСИБО ЗА ВНИМАНИЕ. ОСТАВЛЯЙТЕ СВОИ КОММЕНТАРИИ, ДЕЛИТЕСЬ С ДРУЗЬЯМИ. 
ЖДЕМ ВАШИХ ОТЗЫВОВ И ПРЕДЛОЖЕНИЙ.

Система усовершенствованного прямого впрыска бензина GDI (Mitsubishi)

Инновационная технология двигателестроения в течение многих лет была приоритетом развита компании Mitsubishi Motors. В частности, компания Mitsubishi стремилась повысить эффективность двигателей в стремлении удовлетворить растущие требования со стороны экологии, как-то уменьшение расхода топлива и сокращение эмиссии СО2, чтобы ограничить отрицательное действие парникового эффекта.

Mitsubishi приложила существенные усилия к развитию двигателя с прямым впрыском бензина. В течение многих лет автомобильные инженеры полагали, что этот тип двигателя имеет самый большой потенциал для оптимизации подачи топлива и сгорания, что, в свою очередь, может обеспечить лучшее качество работы и снизить потребление топлива. Однако до сих пор никто не спроектировал удачный двигатель с прямым впрыском топлива в цилиндр (Gasoline Direct Injection — GDI), пригодный для массового производства. Разработанный в компании Mitsubishi двигатель типа GDI (усовершенствованного прямого впрыска бензина) — это реализация мечты инженера.

Для подачи топлива обычные двигатели используют систему впрыска топлива, которая заменила систему карбюрации. Система MPI, или система многоточечного впрыска, где топливо подводится к каждому устройству ввода, является в настоящее время одной из наиболее широко используемых систем. Однако даже в двигателях MPI имеются ограничения на условия подачи топлива и управление сгоранием, потому что топливо смешивается с воздухом перед введением в цилиндр. Mitsubishi намеревалась раздвинуть эти пределы, разрабатывая двигатель, где бензин вводится непосредственно в цилиндр, аналогично дизельному двигателю, и, кроме того, моментом впрыска управляют в точном соответствии с условиями нагрузки. Двигатель GDI достиг следующих выдающихся показателей:

  • чрезвычайно точный контроль порции топлива в результате сгорания ультрабедных смесей топливная, эффективность превышает эффективность дизельных двигателей
  • очень эффективный впрыск и уникально высокая степень сжатия обеспечивают данному двигателю GDI высокую эффективность и отличную приемистость, которые превосходят таковые для обычных двигателей MPI

Технология, реализованная Mitsubishi для двигателя GDI, является краеугольным камнем для следующего поколения высокоэффективных двигателей. Очевидно, эта технология будет развиваться и далее.

На рисунке показано развитие системы подачи топлива.

Развитие системы подачи топлива

Рис. Развитие системы подачи топлива

Главные цели двигателя GDI

Разработка двигателя GDI позволяет решить следующие основные задачи:

  • добиться ультранизкого потребления топлива, лучшего, чем у любого из дизельных двигателей
  • обеспечить мощность, превосходящую мощность обычных двигателей MPI

Технические особенности двигателя GDI

Двигатель GDI имеет следующие технические особенности:

  • строго вертикальные каналы ввода для оптимального управления потоком воздуха в цилиндре
  • поршни с круглой выборкой в верхней части для лучшего сгорания топлива
  • топливный насос высокого давления для подачи топлива в инжекторы под давлением
  • вихревые инжекторы высокого давления для создания оптимальной воздушно-топливной смеси

Оптимальная топливная струя для двух режимов сгорания

Используя собственные уникальные методы и технологии, Mitsubishi смогла добиться, что двигатель GDI обеспечивает и меньшее потребление топлива, и более высокую выходную мощность. Этот внешне противоречивый и трудный трюк реализован путем применением двух режимов сгорания. Кроме того, момент впрыска меняется, чтобы соответствовать нагрузке двигателя.

Для условий нагрузки, испытываемой автомобилем при типичном городском движении, топливо впрыскивается в конце такта сжатия, аналогично дизельному двигателю, благодаря этому достигается ультрабедное сгорание за счет идеального формирования стратифицированной воздушно-топливной смеси. В идеальных условиях движения топливо вводится на такте впуска. Это гарантирует гомогенную воздушно-топливную смесь, подобную смеси обычных двигателей MPI, что обеспечивает более высокую выходную мощность.

Режим ультрабедного сгорания

При нормальных условиях движения, до скорости 120 км/ч, двигатель GDI Mitsubishi работает в режиме ультрабедного сгорания, что приводит к наименьшему потреблению топлива. В этом режиме впрыск происходит на последней стадии такта сжатия, и в цилиндре сгорает ультрабедная смесь с отношением «воадух-толливо» 30—40 (включая EGR 35-55).

Режим повышенной выходной мощности

Когда двигатель GDI работает с более высокими нагрузками или на более высоких оборотах, имеет место впрыск топлива во время такта впуска. Это оптимизирует сгорание благодаря гомогенной и более холодной воздушно-топливной смеси, которая минимизирует возможность детонации.

Фундаментальные технологии двигателя GDI

В основе конструкции двигателя GDI лежат четыре технических особенности:

  • Вертикально прямой канал ввода — поставляет оптимальный поток воздуха в цилиндр
  • Поршень с криволинейной вершиной — управляет сгоранием, помогая формировать воздушно-топливную смесь
  • Топливный насос высокого давления — обеспечивает давление необходимое для прямого впрыска в цилиндр
  • Вихревой инжектор высокого давления — управляет испарением и дисперсией топливной струи

Эти фундаментальные технологии, объединенные с другими уникальными технологиями управления подачей топлива, позволили компании Mitsubishi достигнуть обеих целей разработки потреблении топлива у двигателя GDI ниже, чем у дизельных двигателей, а выходная мощность выше, чем мощность обычных двигателей MPI.

Струя воздуха внутрь цилиндра

Двигатель GDI имеет вертикальные прямые каналы впуска смеси, а не горизонтальные, используемые в обычных двигателях. Вертикальные прямые каналы эффективно направляют поток, воздуха вниз на поршень с криволинейной поверхностью верхней части, которая сильно изменяет направление струи, образуй обратный вихрь для оптимального перемешивания впрыснутого топлива.

Струя топлива

Недавно разработанные вихревые инжекторы высокого давления обеспечивают идеальную струю со структурой, соответствующей каждому из режимов эксплуатации двигателя. В то же самое время, благодаря сильно турбулентному движению топливной струи, инжекторы обеспечивают достаточную степень распыления топлива, что является обязательным для двигателя типа GDI даже с относительно низким топливным давлением 50 кг/см3.

Оптимизированная конфигурация камеры сгорания

Поршень с криволинейной выемкой на вершине управляет формой воздушно-топливной смеси, так же как и струя воздуха в камере сгорания, что играет важную роль в образовании компактной воздушно-топливной смеси. Смесь, которая вводится на последней стадии такта сжатия, направляется к свече зажигания прежде, чем она сможет рассеяться.

Чтобы определить оптимальную форму вершины поршня компания Mitsubishi использовала передовые методы наблюдения процессов в цилиндре, включая лазерные методы.

Базовая концепция

В обычных бензиновых двигателях было бы затруднительно обеспечить распыление воздушно-топливной смеси с идеальной плотностью вокруг свечи зажигания. Однако это стало возможным в двигателе GDI. Кроме того, достигнуто чрезвычайно низкое потребление топлива, потому что идеальная стратификация позволяет топливу, введенному на поздней фазе такта сжатия, поддержать сгорание сверхбедных воздушно-топливных смесей.

В ходе тестовых испытаний двигателя было показано, что воздушно-топливная смесь с оптимальной плотностью собирается вокруг свечи зажигания в виде стратифицированного заряда топлива. Это также было подтверждено анализом поведения топливной струи непосредственно перед воспламенением и анализом мгновенного состава воздушно-топливной смеси.

В результате достигнуто чрезвычайно устойчивое сгорание ультрабедной смеси с отношением «воздух-топливо» 40:1 (55:1 при включении рециркуляции выхлопа).

Сгорание ультрабедной смеси

В обычных двигателях МРI существовали пределы обеднения смеси из-за больших вариаций характеристик сгорания. Однако стратифицированная смесь в двигателе GDI позволила значительно уменьшить воздушно-топливное отношение, не приводя к худшему сгоранию. Например, в период холостого хода, когда сгорание является наименее активным и непостоянным, двигатель GDI поддерживает устойчивое и быстрое сгорание даже чрезвычайно бедной смеси с отношением «воздух-топливо» 40:1 (55:1 с включением режима EGR). На рисунке показана разница в работе между GDI и обычной многоточечной системой впрыска.

 Параметры двигателя GDI и двигателя с обычной системой MPI

Рис. Параметры двигателя GDI и двигателя с обычной системой MPI

Потребление топлива автомобилем рассматривается в условиях холостого хода, круиза и городского движения.

Потребление топлива в режиме холостого хода

Двигатель GDI поддерживает устойчивое сгорание даже на низких оборотах холостого хода. Более того, он обеспечивает большую гибкость в регулировании скорости холостого хода. Его потребление топлива в этом режиме на 40% меньше по сравнению с обычными двигателями.

Потребление топлива в режиме холостого хода

Рис. Потребление топлива в режиме холостого хода

Потребление топлива в режиме постоянной скорости движения

На скорости 40 км/ч двигатель GDI потребляет на 35% меньше топлива, чем сопоставимый по размерам обычный двигатель.

Потребление топлива в режиме постоянной скорости движения

Рис. Потребление топлива в режиме постоянной скорости движения

Потребление топлива в городском цикле

При проведении испытаний в типовом режиме городского движения двигатель GDI потреблял на 35% меньше топлива, чем обычные бензиновые двигатели тех же размеров. Кроме того, испытания показали, что двигатель GDI потребляет даже меньше топлива, чем дизельные двигатели.

Потребление топлива в городском цикле

Рис. Потребление топлива в городском цикле

Контроль эмиссии

Предыдущие попытки сжигать бедные воздушно-топливные смеси приводили к трудностям в регулировании эмиссии NOx. Однако для двигателя GDI достигнуто 97-процентное сокращение окислов NOx при использовании высокого (порядка 30%) уровня рециркуляции выхлопного газа. Этот результат достигается благодаря уникально устойчивому сгоранию топлива в двигателе GDI, а также благодаря недавно разработанному катализатору обедненных окислов азота, На рисунке показан график эмиссии NOx для этого двигателя, на рисунке ниже — катализатор обедненных окислов азота.

Эмиссия окислов азота

Рис. Эмиссия окислов азота

Новейший катализатор обедненных окислов азота

Рис. Новейший катализатор обедненных окислов азота

Базовая концепция

Чтобы достичь мощности выше, чем у обычных двигателей типа MPI, двигатель GDI имеет высокую степень сжатия и очень эффективную систему забора воздуха, которые приводят к повышению объемной эффективности.

Повышенная объемная эффективность

По сравнению с обычными двигателями, двигатель GDI от Mitsubishi обеспечивает более высокую объемную эффективность. Вертикальные прямые впускные каналы создают более ровный забор воздуха. Испарение топлива, которое происходит в цилиндре на последней стадии такта сжатия, охлаждает воздух для повышения объемной эффективности.

Повышенная объемная эффективность

Рис. Повышенная объемная эффективность

Увеличенная степень сжатия

Охлаждение воздуха в цилиндре за счет испарения топлива имеет и другое преимущество — минимизация возможности детонации. Это позволяет применять высокую степень сжатия, около 12, и, таким образом, улучшить сгорание. По сравнению с обычными двигателями MPI сопоставимого размера, двигатель GDI обеспечивает приблизительно на 10% большую выходную мощность и крутящий момент на всех скоростях вращения.

Увеличенная степень сжатия

Рис. Увеличенная степень сжатия

Характеристики двигателя

Рис. Характеристики двигателя

В режиме повышенной выходной мощности двигатель GDI обеспечивает значительное постоянное ускорение. На рисунке сравнивается работа двигателя GDI и обычного двигателя MPI в режиме ускорения автомобиля.

Ускорение автомобиля

Рис. Ускорение автомобиля

что это такое, возможные проблемы

История двигателей GDI (Gasoline Direct Injection) берет начало в 1925 году, когда шведский инженер Е.Хесселаман создал легкую и экономичную установку с искровым зажиганием, работающую сразу на нескольких видах топлива: бензине, солярке, масле и керосине. Подача топлива в камеры сгорания осуществлялась насосом, а для воспламенения слабо сжимаемой смеси использовались свечи. По мере изменения внешних температур менялся и вид топлива. В сравнении с предшественником современные GDI-агрегаты многократно улучшены и заслужили признание ведущих компаний мирового автопрома, хотя в качестве топлива в них используется лишь бензин. Первой серийный выпуск авто с установкой Gasoline Direct Injection начала компания Daimler-Benz. Рассмотрим подробнее, что такое GDI двигатель? Как он устроен? Что делает его популярным? И есть ли у него недостатки?

Чем отличается GDI двигатель

В GDI-двигателях реализована идея прямого впрыска топлива в камеру сгорания. Подобное решение для остальных бензиновых агрегатов нехарактерно. GDI двигатели объединили в себе некоторые черты двигателей на бензине и на дизельном топливе, получив в итоге очень достойные характеристики. От дизелей GDI достался топливный насос, подающий топливо под давлением около 4,8 Мпа (примерно 50кг/см2) и система впрыска на финальной стадии сжатия, а от бензиновых – тип топлива и свечи зажигания. Форсунка в GDI направляет топливо прямо в цилиндр, там же происходит его смешивание с воздухом, однако для зажигания смеси используется искра.

впрыск топлива

Впрыск топлива в обычном инжекторном двигателе и GDI.

Концепция превосходства

Подаваемая в цилиндр смесь хорошо структурирована, направляется по выверенной траектории, распределяется по всему объему, но в разной концентрации. Обедненная порция так называемой «холодной» концентрацией достигает стенок цилиндра, тогда как более богатая «горячая» – остается в центре, где располагается свеча. В этом секрет сохранения работоспособности двигателя, несмотря на использование сверхобедненных смесей, что объясняется созданием необходимой концентрации у самой свечи. Вдобавок агрегат оснащается двумя топливными насосами, один из которых дислоцируется в баке, что типично, а другой, насос высокого давления (ТНВД), создает атмосферу в топливной рампе.

Благодаря ТНВД удалось свести к минимуму время открывания форсунок и понизить расход бензина, сохранив на достойном уровне крутящий момент и разгонные показатели. В двигателях с инжектором на холостых оборотах открытие форсунки происходит через 3 мс, а в GDI-двигателях – через 0,51 мс. Это в 6 раз быстрее!

На практике для достижения всех плюсов прямого впрыска инженерам пришлось сделать многое, например:

  • изменить форму поршневого днища так, чтобы она обеспечивала подачу смеси непосредственно к свече;
  • увеличить давление бензина с 3 до 50 бар;
  • выполнить в головке блока каналы впуска для получения воздушного винта в цилиндрах и др.
движение воздуха в камере сгорания и форма поршня

Движение воздуха в камере сгорания и форма поршня. Двигатель Mitsubishi 4G93 GDI.

Читайте также: TDI двигатель — что это такое и чем он отличается от GDI.

Прогрессивность GDI

  • Выпускаемые в Японии агрегаты располагают режимом Ultpa Lean Combustion Mode, разрешающим использовать супер-обедненную смесь в пропорции 37-41:1. Этот режим задействуется до достижения порога в 115-120 км/ч если нет резких изменений нагрузки и обеспечивается постепенное наращивание скорости. Впрыск осуществляется спиральной струей по ходу стрелки часов.
  • Стехиометрический режим Superior Output Mode используется, когда стрелка показывает 125 км/ч и более, автомобиль преодолевает затяжной подъем или же буксирует прицеп.
  • В режиме Stich F/B состав рабочей смеси очень похож на характерный для стехиометрического. Технология имеет свои подрежимы, в одном из которых (Closed loop) воздушно-бензиновый баланс определяется показаниями кислородного датчика, в другом же (Open loop) — сенсоры на состав топливной смеси не влияют.
  • В двигателях GDI европейского образца есть еще одно усовершенствование – Two-Stage Mixing, – обеспечивающее эффективный двухступенчатый бензиновый впрыск в момент резкого старта либо стремительного обгона. Технология подразумевает двукратный впрыск в течение четырехтактного цикла. На впуске в цилиндр попадает двукратно супер-обедненная смесь, но она не воспламеняется и содействует преимущественно охлаждению камеры. А в момент сжатия подается уже сверх-обогащенная смесь, в пропорции воздуха и горючего 12:1, так коэффициент заполняемости камеры повышается и двигатель показывает предельную мощность.

Проблемы GDI двигателя

Основная проблема состоит в высокой чувствительности GDI-двигателей к качеству топлива. Это в равной мере относится и к любым неисправностям, способным хоть как-то отразиться на качестве подаваемой смеси.

На установках Gasoline Direct Injection иногда наблюдается сильное почернение свечей зажигания или они вовсе выходят из строя. Обычно это результат высокой чувствительности топливной аппаратуры к воде и мельчайшим примесям. Накопление сажи во впускном коллекторе объясняет её попаданием в камеру сгорания. Её частички могут оседать на клапанах и забивать форсунки, что мешает нормальному распылению бензина.

Вследствие накопления нагара на внутренней поверхности впускного коллектора меняется конфигурация спирали воздуха; она уже не соответствует норме для GDI, в итоге чего сгорание нарушается. По количеству нагара на свечах достаточно объективно определяется степень засоренности впускного тракта. До определенного момента нормальной их работе это не мешает, но через 20 тыс. км пробега можно подумать об замене, а впускной коллектор в профилактических целях рекомендуется очищать через 25-30 тыс. км.

Также проблемой является повышенная токсичность выхлопов. Сгорание сверхобедненной топливной смеси приводит к образованию токсичных окислов азота NOx. Чтобы подогнать показатели выхлопа под требования Euro 3 японские инженеры сначала модернизировали нейтрализаторы, а позже добились их невысокой чувствительности к серным примесям. 

Видео на тему

Похожие статьи

GDI, особенности

В принципе, это планировалось — сделать такую «информашку», но позже. Однако — писем много, спрашивают. Вот и решил с сегодняшнего дня начать выкладывать накопившиеся осцилограммы. Как говорится: «по просьбе трудящихся».
 Итак, начнем?

 — двигатель GDI — 4G64 , установленный на Mitsubishi — Chariot выпуска 2000 года : управление дроссельной заслонкой 

4G64.jpg

 
Увеличение на этом снимке большое, а на самом деле, при развертке в 50ms\деление, сигнал этот выглядит таким образом

4G64_2.jpg

…на котором практически ничего разглядеть невозможно.
Здесь можно посмотреть

4G64_3.jpg

 4 управляющих сигнала , так, как они выглядят на мониторе : красный и синий — управление дроссельной заслонкой, желтый — сигнал датчика числа оборотов коленвала, голубой — сигнал датчика числа оборотов распредвала.
Тонкостей и нюансов в этом двигателе достаточно, что бы сломать голову. 
Например, чего стоит только понимание алгоритма работы узла дроссельной заслонки : как при включении, а особенно при выключении зажигания ECU проводит проверку работоспособности узла дроссельной заслонки, для чего в определенное время, с определенной скоростью, на определенный угол двигает саму заслонку, контролируя правильность ее перемещения при помощи TPS. В случае, если «проверка не удалась», то возможны два варианта «развития событий» :
— ECU на определенное время отключает управление дроссельной заслонкой с кодом неисправности №…
 — ECU переходит на режим работы «по умолчанию» с кодом неисправности №…, при этом дроссельная заслонка работает «вполсилы». До мастерской доехать возможно… 
На этом двигателе СЭВТ 
(система электронного впрыска топлива), уже можно считать «продвинутой», потому что даже при такой «неисправности», как «нехватка поступающего во впускной коллектор ( и в двигатель, естественно) воздуха», ECU «выдает» свой, определенный код неисправности.
При этом двигатель по «команде» ECU переходит на режим работы
 «по умолчанию» , но  в этом режиме автомобилю, скорее всего, даже до мастерской добраться будет затруднительно : двигатель «колотит» и впечатление такое, что он вот-вот «рассыпется» (как будто изнутри его «раздирают»  какие-то силы в противоположных  направлениях).
Была возможность «проимитировать» практически все коды неисправностей, которые есть у данного двигателя.
И что можно сказать : это самые «непонятные», ни с чем не схожие неисправности, совершенно не похожие на  неисправности «обычного» двигателя. Например, такая вот неисправность, как «снижение расчетного давления топливного насоса высокого давления». В зависимости от того, насколько именно будет снижено это давление ( насколько силЕн  внутренний износ прецизионных деталей ), и внешние признаки неисправности могут быть совершенно разными. Свечи зажигания могут быть как и  «черно-черными», так и «светло-светлыми». Ну и так далее…
 Почему не рекомендуется запускать двигатель системы GDI с «плохим» или «подразряженным» аккумулятором :

Вот здесь можно посмотреть осцилограмму

4G64_4.jpg

 датчика числа оборотов коленвала.
Вы видите, что сигнал датчика «развезен» по времени, что, несомненно, оказывает свое отрицательное влияние на запуск двигателя — широту импульса форсунок. Двигатель при таком аккумуляторе может не запуститься, потому что свечи зажигания будут мгновенно залиты топливом. И потом можно крутить стартером до умопомрачения…
А вот на этой осцилограмме

4G64_4.jpg

— аккумулятор вполне хороший, двигатель «схватил» сразу же.

Основные отслеживаемые параметры СЭВТ :
 — датчик кислорода — напряжение, mv
 — Air Flow sensor — частота, Гц
 — Air temperature sensor — градусы Цельсия
 — TPS (sub) — напряжение, mv
 — напряжение АКБ, вольт
 — сигнал датчика детонации
 — датчик температуры двигателя, градусы Цельсия
 — давление во впускном коллекторе, Kpa
 — TPS, контакт IDL, «есть-нет»
 — сигнал кондиционера, «есть-нет»
 — время открытия инжекторов (форсунок), ms
 — давление в топливной системе, Mpa
 — APS (sub), mv ( обязательна регулировка до 1-3 mv )
 — APS (main), mv ( обязательна регулировка до 1-3 mv)
 — TPS (main), mv ( обязательна регулировка до 1-3 mv) — именно эти, «милливольтовые» регулировки ( сначала на двигателе только при включенном зажигании, а потом на запущенном двигателе и на ХХ), оказывают большое влияние на плавность движения автомобиля, на переключение передач АКПП, на расход топлива и так далее и тому подобное…Регулировки, естественно, проводятся исключительно по показаниям сканера и в сравнении с так называемыми «заводскими» регулировками — по «мануалу»  и  внутрифирменной инструкции.
 — Target Pe, kPa
 — combust.mode, ( open — loop)
 — и так далее, и тому подобное…
Особенно не рекомендуется  «тыкать скрепкой канцелярской» в разъем диагностики, потому что :
 — полученный код неисправности  не  всегда будет истинным ( к тому же, ну получили мы, например, код неисправности 95\2 или 104 — и что далее? Расшифровки-то нет…).
 — после такого вмешательства считывание данных при помощи сканера становится по каким-то причинам сильно затруднительным!  Сканер просто-напросто перестает «понимать» бортовой компьютер. 
К слову сказать, 
не на этом, на другом автомобиле при проверке сканером работоспособности СЭВТ , сканер определил и написал на дисплее, что  :
  «удаление кодов неисправностей было проведено ручным методом, что является неправильным, удалите коды неисправностей через клавишу №3«,- вот  приблизительно  таким образом можно было перевести сообщение.


Воздух
Практически никто ( и владелец автомобиля, и в мастерской), никто не обращает внимание на соответствие «топливо — воздух» в двигателе системы GDI. Конечно, сделать какие-то измерения здесь достаточно проблематично, однако можно хотя бы внешне определить «хватает ли двигателю воздуха», потому что GDI весьма и весьма чувствителен к этому параметру. Для этого надо просто-напросто «все поснимать» и получить доступ ко впускному коллектору. И если там  визуально будут обнаружены «грибы» грязи, наросты черного цвета и так далее — придется снимать впускной коллектор и все остальное делать «ручками».
Потому что : двигатель GDI это не только  двигатель «прямого, непосредственного впрыска топлива», это еще и двигатель, который на многих своих режимах работает на так называемой «обедненной» смеси ( топливо впрыскивается в цилиндр в конце такта сжатия), где весьма желательно иметь оптимальный состав как и топлива, так и воздуха.
В печати приводятся данные, что на таком «обедненном» составе ТВС (топливо-воздушной смеси)  двигатель GDI работает на скорости до 120 км.час. А после скорости 120 км.час «включается» режим «мощностного обогащения».
То есть, на таком режиме ( ДО скорости 120 км.час) —  нет «мощностного обогащения» топливом ( при «мощностном обогащении» впрыск топлива проводится ECU два раза : во время такта впуска и сжатия). 
Это не совсем так, как мне лично кажется.
 При проверках было установлено, что так называемый «мощностной» режим работы двигателя определяется ECU ( и включается ) по следующим отслеживаемым  параметрам :
 — TPS (main)
 — TPS (sub)
 — APS (main)
 — APS (sub)
,- и некоторым другим, названы только основные для «общего» понимания.
Так вот, кроме «просто» положения того же датчика положения дроссельной заслонки, ECU отслеживает и скорость его перемещения от точки «А» до точки «В», например. 
Если скорость перемещения соответствует заданным параметрам, то начинает включаться «мощностное» обогащение, но не сразу по всем цилиндрам, а постепенно, от первого к четвертому. Точно таким же образом оно и «выключается», но в обратном порядке.
При какой-то неисправности в системе определения режимов работы ECU может постоянно «давать» команду на «мощностной» режим, и двигатель будет не «кушать», а — «жрать» топливо. 
Например, 
по каким-то причинам TPS или APS установлены неправильно или искаженно.


Топливо 
О топливе для двигателей системы GDI говорилось уже много, в том числе и на «просторах этого сайта».
Да, топливо надо исключительно высококачественное.
Однако, как ни странно, это относится не ко всем автомобилям. Например, у нас по городу бегает несколько автомобилей с двигателями GDI которые ни разу даже «не чихнули», хотя топливом они заправляются — «обычным», то есть тем, что есть на наших заправках.
По всей видимости , это можно отнести или к случайному и счастливому совпадению, или к Провидению. И почему:
Топливо, которое применяется «чисто в Японии» для двигателей GDI на «порядок или более» просто-напросто «лучшее», чем наше, отечественное.
Об этом говорилось , и не раз. Ну что стоит , например, наша «привычка» добавлять — разбавлять топливо тем же тетраэтилсвинцом или какими-то другими «спецификациями» в угоду корыстным или «погодным» условиям.
Для двигателей GDI «родным» топливом является исключительно тот бензин, который производится в Японии.
Есть такое понятие, как  «сухое» топливо. Ранее мы всегда применяли это выражение исключительно для «солярки». А сейчас приходиться применять это выражение и для бензина, как это ни странно звучит.
Да, наше родное отечественное топливо исключительно «сухое», не говоря уже о том, что оно так же «исключительно грязное» и «исключительно непонятно какое».
Прецизионные детали топливного насоса высокого давления, которые применяются в двигателе GDI,  весьма и весьма чувствительны к той «смазке», которая присутствует в топливе «чисто» японском.
И наоборот, которая отсутствует в «чисто» русском топливе.
Нарастает износ. Двигатель начинает вести себя крайне непонятно, что и является началом «болезни» и дорогостоящего ремонта.
Ремонту такие насосы высокого давления — поддаются. Да, их ремонтировать можно. Получалось. Но, увы, не на всех автомобилях. Все зависит от степени износа : если напорные пластины уже покрыты коррозией, на них присутствуют «выщерблинки» и тому подобное, то кропотливый труд не окупится ни деньгами, ни моральным удовлетворением.
Работа будет сделана зря.
Тем более, что ремонтировать такой насос гораздо сложнее, чем, например, ТНВД дизельного двигателя.
Да, не зря поэтому «товарищи японцы» так и не решились официально поставлять автомобили с двигателями GDI к нам в Россию. Правда, одна такая попытка была, год или более назад. Но далее такой попытки дело не пошло, потому что начались «возвраты», претензии, недовольства и так далее ( город Москва).
Японцы — тоже люди, и им тоже присущи такие черты, как «хитрость».
Зная, что есть такое понятие, как «предпродажная подготовка», они всеми путями стараются ее избежать. Потому что, если ее проводить, то стоимость машины возрастет многократно, что «не есть выгодно», кто купит тогда подержанную машину по цене практически новой?
У топливного насоса высокого давления двигателя GDI тоже есть свой и вполне определенный ресурс. Точные данные неизвестны, но можно предположить, что это где-то в районе 60 — 80 тысяч километров.
Именно с таким пробегом и поступают к нам на Сахалин подержанные GDI.
И как вы думаете, какой после этого можно сделать вывод?

Владимир Петрович

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *