Нагрузочная характеристика: Нагрузочная характеристика (электроника) — Википедия – Нагрузочная характеристика | Теория

Содержание

Нагрузочная характеристика двигателя

Нагрузочная характеристика двигателя определяется пропорциональностью главных параметров двигателя, а также показателем нагрузки при неизменных оборотах коленвала. Настоящее определение показывает деятельность мотора машины в движении в одинаковом скоростном режиме, на одной и той же передаче при различных сопротивлениях дорожного покрытия.

Нагрузочная характеристика мотораТипичный график нагрузочной характеристики мотора

Определяющими параметрами мотора по нагрузочной характеристике считаются GT и ge. Кроме этого, выделяют:

  • температуру высвобождаемого воздуха;
  • коэффициент заполнения;
  • коэффициент повышенности газов;
  • ускоренное впрыскивание;
  • токсичность выхлопных газов;
  • задымление (для дизельных двигателей).

Холостой ход при определённых оборотах соответствует крайней точке характеристики слева. Точка справа — предельной нагрузке, которую двигатель способен вынести на тех же оборотах.

В карбюраторном моторе снижение мощности при постоянном значении скорости происходит с помощью закрытия дросселя. Плотность снижается, а отсюда количество поступления топлива. Такой тип контроля именуется количественным. При закрытии дросселя экономия мотора изменяется. Её оценка, а также других параметров движка измеряется нагрузочной характеристикой.

Нагрузочная характеристика ДВС зависит от потребления горючего, удельной эффективности такого потребления, а также других параметров при равномерной скорости и режиме тепла.

Изменение часовой затраты горючего зависит от составляющих компонентов топлива, а также показателя заполнения. Одновременно с открытием дросселя сопротивление гидравлики впуска снижается, показатель заполнения поднимается, как и затраты горючего.

Вместе со всем этим процессом меняется качество впрыскиваемого топлива. Показатель избыточности воздуха меняется с требуемой мощностью и контролем экономии топлива.

Завышенные затраты горючего при максимальных параметрах нагрузки можно объяснить насыщением топлива за счёт раскрытия створок экономайзера.

Механический КПД стремится к нулю при холостых оборотах, т. к. вся деятельность движка тратится, чтобы преодолеть механические потери. Также на холостых оборотах происходит обогащение топлива, потому что при открытии дросселя давление и температура снижаются, условия для зажжения искры становятся хуже.

Вместе с открытием дросселя в месте средней нагрузки обогащённое топливо уже не требуется, происходит подача более «бедного» горючего. Это повышает индикаторный КПД.

Способы снятия нагрузки

Мотор должен прогреться на маленькой нагрузке, дроссель открывают на всю. Частота оборотов движка регулируется с помощью тормозной системы. Как только тепловой и скоростной режимы устанавливаются в определённое положение, замеряют показатели:

  • весов;
  • затраты топлива по времени;
  • частоты оборотов;
  • температуры воды;
  • температуры масла.

Значения записываются, после чего выставляют другой режим, но с заниженными показателями. Измеряют и заново сравнивают. На основе всех испытаний строится график, где видны коэффициенты изменений различных показателей — затраты горючей смеси, излишки воздуха, наполнения, температуры. С помощью подобных опытов находят оптимальный режим работы двигателя.

Определение нагрузки дизельного двигателя

Нагрузочная характеристика дизеля обуславливается затратами топлива и всеми показателями работы движка и его загруженности — мощность и давление при стабильных оборотах коленвала. Эти функции, возникшие от неизменных вращений, устанавливаются для всех скоростных режимов. Следует учитывать расходы топлива, максимально возможную подачу его и затраты за определённый период. Всем этим и характеризуются показатели двигателя.

Дизельный мотор в сборе

Различия дизельного и карбюраторного двигателей

Нагрузочные характеристики дизеля отличаются от карбюраторного из-за особенных способов сгорания, образования смеси и контролирования мощности. В дизельном моторе топливная воздушная масса образовывается за тысячные доли секунды. В таком случае средним показателем для заполненного объёма воздуха и горючего считается коэффициент лишнего газа. Когда топливо впрыскивается, то неоднородно распространяется в камере сгорания, образуя места различной консистенции газа и горючего. Именно от этого в дизельном моторе консистенция значительно беднее. Регулировка мощности возможна непосредственно до холостых ходов.

Мощность двигателя можно изменить, если меняются составляющие консистенции. Это делается при помощи снижения или повышения горючего, которое впрыскивается за конкретный отрезок времени при одинаковой подаче воздуха. Практически это делают при передвижении рейки топливного шланга.

Коэффициент наполнения не меняется, при возрастании мощности он минимизируется из-за повышения температуры. Показатель лишнего воздуха зависит от расхода топлива.

Высокая мощность у двигателей обнаруживается при пиковом показании значения, определяющего качество всего процесса работы. Отклонение в худшую сторону характеризуется задымлением выхлопных газов, накапливается нагар, снижается экономия, температура мотора возрастает в несколько раз. Отсюда видно, что эксплуатация дизеля в пределах максимальной мощности нецелесообразна.

Задымление при различных параметрах нагрузки

В дизельных движках, имеющих неисправности, чрезмерное задымление выхлопных газов образуется из-за изменения режима скорости и нагрузки. Существуют три вида задымления по цветам:

  • чёрный — масса веществ углерода, образующаяся из-за чрезмерного обогащения заряда работы. Это возникает за счёт уменьшения скорости, повышенных нагрузок и сильных форсировок;
  • белый — вещества горючего, которые не успели сгореть. Обычно бывает у непрогретого мотора;
  • голубой – углеводород не успевает сгорать и выходит с отработанными газами.

Дым из трубы

Задымление чаще происходит, если нагрузка не превышает пятьдесят процентов. Если переваливает за этот предел, то задымление прекращается. При проведении различных опытов было доказано, что дым голубого цвета не присутствует у дизельных двигателей с четырёхтактной фазой. В таких движках дым только чёрного цвета.

КПД

Повышение объёма горючего, попадающего в мотор, с одновременным повышением нагрузки является результатом уменьшения индикаторного КПД. Переходя к наименьшим нагрузкам от холостых оборотов, механический и индикаторный коэффициент полезного действия повышается. Если дальше повышать нагрузку — механический КПД возрастёт, а расход горючего будет уменьшаться. Если повысить впрыск горючего, то повышается мощность мотора, но экономия падает, происходит задымление выхлопных газов, движок сильно греется — это явный признак некачественной переработки топлива.

Можно ли снять нагрузку?

Следует дать движку прогреться достаточным образом, в это же время перемещается планка, которая регулирует впрыск горючего и контролирует тормоз, показания мотора выводятся на максимальные значения оборотов коленвала при выбранном режиме скорости. Итоговый режим соответствует предельной мощности при конкретных оборотах. Через небольшой отрезок времени после регулировки оборотов стоит измерить следующее:

  • отработанные газы, масло, показания температуры воды;
  • силу тормоза и момента вращения;
  • показания оборотов коленвала;
  • время затрат выбранной дозы горючего.

Коленвал бензинового двигателя

После всего проделанного с помощью регулирования тормоза оставляют выбранную частоту оборотов, уменьшают впрыск горючего с помощью планки топливного шланга, переходят к дальнейшему этапу и делают необходимые измерения. За счёт последовательного снижения подачи горючего и при определённом количестве оборотов образуется некоторое количество точек нагрузки. Рассчитывают оптимальную нагрузочную характеристику.

Механик возле автомобиля

Если статья оказалась полезной, напишите нам об этом.

Нагрузочная характеристика двигателя

⇐ ПредыдущаяСтр 6 из 8Следующая ⇒

Нагрузочная характеристика представляет собойзависимость часового и удельного эффективного расходов топлива от нагрузки (мощности, крутящего момента, среднего эффективного давления) двигателя при постоянной частоте вращения коленчатого вала. Она позволяет оценить экономичность двигателя на различных нагрузках при данной частоте вращения вала.

Условия снятия характеристики:

- нормальное тепловое состояние двигателя;

- постоянная частота вращения коленчатого вала;

- установившийся температурный режим двигателя;

- исправные системы зажигания и питания двигателя.

Общий вид нагрузочной характеристики двигателя показан на рис.18.

 

Теоретическая часть

Особенности работы двигателя на режимах холостого хода и малых

 нагрузок.

Работа двигателя на режимах холостого хода и малых нагрузок имеет ряд характерных особенностей. Так, например, к моменту открытия выпускного клапана давление в цилиндре может быть ниже давления в выпускной трубе. Тогда после открытия выпускного клапана происходит перетекание газа из выпускной трубы в цилиндр до выравнивания давлений и лишь затем начинается выталкивание газа из цилиндра в выпускную трубу (рис. 19).

В момент открытия впускного клапана давление газов в цилиндре превышает давление во впускной трубе. Поэтому происходит заброс продуктов сгорания из цилиндра во впускной трубопровод.

 

Рис. 18 Нагрузочная характеристика

Положение усугубляется в период перекрытия клапанов, когда может происходить достаточно интенсивное перетекание газов из выпускной трубы в полость цилиндра и из цилиндра во впускную трубу. Все это приводит к заметному увеличению коэффициента остаточных газов и значительно повышает вероятность пропуска воспламенения.

Отличие режимов холостого хода и малых нагрузок от режимов полной и средней нагрузок - это не только уже отмеченная в несколько раз большая доля остаточных газов, но и непосредственная зависимость состава заряда от полноты сгорания топлива в предшествующем цикле. Так, при пропуске воспламенения и неполном сгорании топлива остаточные газы содержат неокисленное топливо, свободный кислород и химически активные продукты неполного сгорания.

С этим связана характерная для режимов глубокого дросселирования двигателя цикловая неидентичность процесса сгорания смеси. Как правило, после циклов с более полным сгоранием в рабочем заряде последующего цикла увеличивается инертная составляющая, что приводит к ухудшению процесса сгорания в этом цикле.

Рис. 19 Развернутая индикаторная диаграмма при работе двигателя на холостом ходу

Следствием плохого сгорания на режимах холостого хода и малых нагрузок является повышенный выброс вредных веществ, уменьшение индикаторного КПД двигателя. Низкое давление во впускном трубопроводе, обусловленное сильно прикрытой дроссельной заслонкой, означает большие насосные потери. Механические потери двигателя, абсолютная величина которых не зависит от нагрузки, при малой нагрузке относительно нее то же становятся большими. Все это приводит к увеличению удельного эффективного расхода топлива. Улучшить эти показатели позволяет использование переменных фаз газораспределения (уменьшение продолжительности перекрытия клапанов), повышение степени сжатия двигателя, увеличение угла опережения зажигания и обогащение горючей смеси.

Сохранение частоты вращения вала при повышении нагрузки двигателя осуществляется за счет открытия дроссельной заслонки и, соответственно, увеличения наполнения цилиндров свежим зарядом. При этом повышаются давление в цилиндре и качество процесса сгорания, уменьшаются насосные, относительные механические потери и удельный эффективный расход топлива. Часовой расход топлива при этом плавно возрастает.

Наилучшая топливная экономичность должна наблюдаться при полной нагрузке.

Однако на практике горючую смесь на нагрузках, близких к полной, обычно обогащают для получения максимально возможной мощности при данной частоте вращения вала. Обогащение смеси обусловливает химическую неполноту сгорания топлива и, соответственно, снижение экономичности двигателя. В этом случае минимальный удельный эффективный расход топлива имеет место при нагрузках, составляющих 85…90% от полной. Обогащение смеси ведет и к более быстрому росту часового расхода топлива на больших нагрузках.

 

Экспериментальная часть

Нагрузочную характеристику снимают при постоянной частоте вращения коленчатого вала, изменяя положение дросселя от минимального открытия его, соответствующего холостому ходу, до полного открытия. Поскольку автомобильный двигатель работает в широком диапазоне частот вращения, то для выявления его топливной экономичности необходимо снять несколько нагрузочных характеристик при различных значениях частоты вращения вала. Нагрузку при испытаниях варьируют с помощью тормозной установки, а изменением степени открытия дроссельной заслонки поддерживают постоянной частоту вращения вала.

Регулировки состава горючей смеси и угла опережения зажигания при снятии нагрузочной характеристики обеспечиваются автоматической работой соответствующих систем двигателя. Стенд оснащен устройством, позволяющим фиксировать дроссельную заслонку в произвольном положении, начиная от положения на упоре при работе на холостом ходу и до ее полного открытия.

Первый опыт проводят при наименьшем открытии дроссельной заслонки, обеспечивающем устойчивую работу двигателя в режиме холостого хода на заданной частоте вращения коленчатого вала.

Во втором и последующих опытах увеличивают нагрузку двигателя, приоткрывая дроссельную заслонку на 10…12°. Последний опыт проводят при полностью открытой дроссельной заслонке. Для более точного определения показателей в зоне минимальных удельных расходов топлива, (при нагрузке более 70 % от максимальной) желательно проводить опыты более часто.

По результатам испытаний строят графики нагрузочной характеристики.

Графически определяют показатели и регулировки двигателя в характерных точках:

• часовой расход топлива на режиме холостого хода;

• часовой и удельный расход топлива, соответствующие максимальной мощности при полном открытии дроссельной заслонки;

• минимальный удельный расход топлива и соответствующую степень нагрузки двигателя;

• коэффициенты избытка воздуха при работе двигателя на холостом ходу, максимальной нагрузке и при минимальном удельном расходе топлива.

 

Контрольные вопросы

1. Каковы условия снятия нагрузочной характеристики?

2. Почему при увеличении нагрузки на двигатель удельный эффективный расход топлива уменьшается?

3. Почему при открытии дросселя, больше чем  на 85 – 95%, расходы топлива могут резко возрасти?

4. Чему равен удельный эффективный расход топлива на холостом ходу?

5. Как будет выглядеть кривая удельного эффективного расхода топлива, если на всех нагрузках использовать обогащенную смесь?

6. Как зависит давление во впускном трубопроводе от нагрузки на двигатель?

7. Что такое мощностной и экономичный составы горючей смеси?

ЛАБОРАТОРНАЯ РАБОТА №4




Нагрузочная прямая — Википедия

Графический метод расчёта каскада на полевом транзисторе[комм. 1] в режиме с общим истоком. Рабочая точка А выбрана примерно посередине диапазона доступных токов и напряжений. Сплошная синяя линия — нагрузочная прямая по постоянному току, пунктирная синяя линия — нагрузочная прямая по переменному току при ёмкостной связи с нагрузкой

Нагрузочная прямая, или динамическая прямая[1] в электронике и электротехнике — линия на графике вольт-амперной характеристики, отображающая зависимость выходного тока, протекающего через активный усилительный прибор (биполярный, полевой транзистор или вакуумную лампу), от напряжения на его выходных электродах (напряжения коллектор—эмиттер, сток—исток, анод—катод)[2]. Для линейных реактивных нагрузок зависимость приобретает форму замкнутого эллипса, для нелинейных нагрузок — форму нагрузочной кривой.

Исторически, основной целью применения нагрузочных прямых был графический расчёт каскадов, работающих при больших амплитудах выходного напряжения, когда нельзя пренебрегать нелинейностью передаточной характеристики, а средства малосигнального анализа не применимы[3]. Графический метод позволял достаточно точно рассчитывать выходные напряжения и мощности, вносимые каскадом искажения, и оптимизировать выбор рабочей точки[3].

Нагрузочная прямая постоянного тока[править | править код]

Метод нагрузочных прямых применяется для графического анализа усилительных каскадов на вакуумных лампах в режимах с общим катодом или с общей сеткой, на биполярных транзисторах в режимах с общим эмиттером или с общей базой, и на полевых транзисторах в режимах с общим истоком или с общим затвором. В таком каскаде, нагруженном на активное сопротивление RH{\displaystyle R_{H}} и питающемся от источника напряжения Ubb{\displaystyle U_{bb}}, напряжение между выходными электродами Ux{\displaystyle U_{x}} и протекающий между ними ток Ix{\displaystyle I_{x}} (ток анода, ток коллектора, ток стока[комм. 2]) связаны уравнением

Ubb=Ux+IxRH{\displaystyle U_{bb}=U_{x}+I_{x}R_{H}}[4][2].

Возможные решения уравнения лежат на нагрузочной прямой, соединяющей точки (0,Ubb/RH){\displaystyle (0,U_{bb}/R_{H})} и (Ubb,0){\displaystyle (U_{bb},0)}. Первая из них соответствует короткому замыканию выходных электродов, вторая — режиму отсечки (усилительный прибор заперт)[1][2]. При увеличении RH{\displaystyle R_{H}} наклон нагрузочной прямой уменьшается (прямая сдвигается в область меньших токов), при уменьшении RH{\displaystyle R_{H}} наклон увеличивается[1]. В предельном случае RH=0{\displaystyle R_{H}=0} (сток, коллектор или анод коротко замкнуты на шину питания) нагрузочная прямая строго вертикальна[1]. В предельном случае RH=∞{\displaystyle R_{H}=\infty } нагрузочная прямая строго горизонтальна[1]. Если при этом нагрузкой служит активный источник стабильного тока, то прямая отстоит от горизонтальной оси на величину этого тока.

Ток и напряжение в точке пересечения нагрузочной прямой с вольт-амперной характеристикой транзистора или триода для заданного управляющего напряжения характеризуют режим покоя каскада, и называются соответственно током покоя и напряжением покоя[1]. Совместно эти значения образуют точку покоя (рабочую точку) для заданного напряжения смещения[1]. Ux{\displaystyle U_{x}}, Ix{\displaystyle I_{x}} и выделяемая на усилительном приборе мощность не должны превышать предельно допустимые для данного прибора значения Umax{\displaystyle U_{max}}, Imax{\displaystyle I_{max}} и Pmax{\displaystyle P_{max}}. Кроме того, рабочая точка не должна заходить в область низких выходных напряжений, в которой резко возрастают искажения формы сигнала[комм. 3]. Для приёмно-усилительных вакуумных ламп нежелателен заход в область положительных управляющих напряжений[комм. 4], для полевых транзисторов недопустимы управляющие напряжения, при которых открывается переход между затвором и каналом.

В малосигнальных каскадах выбор рабочей точки определяется компромиссом между затратами мощности и допустимой потерей усилительных свойств транзистора[5]. В дискретной схемотехнике ток коллектора маломощного биполярного транзистора обычно выбирается в окрестности 1 мА, ток стока полевого транзистора — от 1 до 10 мА[5]. В каскадах усиления больших сигналов, в которых амплитуды переменных напряжений и токов сопоставимы с напряжением и током покоя, оптимальное напряжение покоя (точка А) полевого транзистора выбирается на уровне примерно половины интервала между границей перехода из линейного режима в режим насыщения и напряжением питания[6]. Для биполярного транзистора оптимальное напряжение покоя равно половине напряжения питания[6].

Нагрузочная прямая переменного тока[править | править код]

Полезная нагрузка может соединяться с выходом усилительного прибора непосредственно, или через разделительный конденсатор, или через разделительный трансформатор. В первом случае сопротивления нагрузки переменному и постоянному току равны, и нагрузочная прямая переменного тока совпадает с нагрузочной прямой постоянному току. При связи через реактивный элемент сопротивление выходной цепи переменному току Z{\displaystyle Z} может быть и больше, и меньше сопротивления постоянному току RH{\displaystyle R_{H}}, поэтому нагрузочные прямые постоянного и переменного тока пересекаются в рабочей точке, но не совпадают[7]. Нагрузочная прямая переменного тока, учитывающая отличие Z{\displaystyle Z} от RH{\displaystyle R_{H}}, обычно строится для чисто активной нагрузки (RΠ{\displaystyle R_{\Pi }}) и для области частот, в которой можно пренебречь влиянием реактивности разделительного конденсатора или разделительного трансформатора[8].

При ёмкостной связи с нагрузкой Z<RH{\displaystyle Z<R_{H}}[7]. На достаточно высоких частотах, когда реактивное сопротивление конденсатора снижается до пренебрежимо малых значений,

Z=RH||RΠ=RHRΠRH+RΠ{\displaystyle Z=R_{H}||R_{\Pi }={\frac {R_{H}R_{\Pi }}{R_{H}+R_{\Pi }}}}[7].

При трансформаторной связи с нагрузкой Z>>RH{\displaystyle Z>>R_{H}}[7]. В первом приближении можно считать, что активное сопротивление первичной обмотки RH=0{\displaystyle R_{H}=0}, и нагрузочная прямая по постоянному току проходит вертикально. На рабочих частотах трансформатора, когда можно пренебречь влиянием индуктивности его первичной обмотки и индуктивностью рассеяния, сопротивление переменному току возрастает до

Z=RH+R2′+RΠ′=RH+R2+RΠK2{\displaystyle Z=R_{H}+R_{2'}+R_{\Pi '}=R_{H}+{\frac {R_{2}+R_{\Pi }}{K^{2}}}}, где R2{\displaystyle R_{2}} - активное сопротивление вторичной обмотки, K{\displaystyle K} - коэффициент трансформации[7].

Нагрузочные линии переменного тока для реактивной нагрузки[править | править код]

K Нагрузочные линии (эллипсы) для комплексной нагрузки (А) и чисто индуктивной нагрузки (B). Во втором случае мгновенные значения напряжения на стоке или коллекторе выходят за допустимые рамки: необходимо снижать напряжение питания, демпфировать индуктивность сопротивлением, или использовать транзистор с большим предельно допустимым напряжением

Если нагрузка имеет комплексный характер, то между протекающим через неё током и падающим на ней напряжением возникает сдвиг фаз[9]. Динамическая характеристика такого каскада имеет форму не прямой, но наклонного эллипса с центром в точке покоя; одна из осей эллипса совпадает с нагрузочной прямой для активной части комплексной нагрузки[10]. Если же нагрузка имеет чисто ёмкостный или чисто индуктивный характер, то оси эллипса параллельны координатным осям[10].

Графический анализ нагрузочных эллипсов не применялся из-за чрезмерной сложности[10]. Взамен, комплексная нагрузка замещалась чисто активным сопротивлением, величина которого равнялась модулю полного сопротивления комплексной нагрузки[10].

  1. ↑ Вольт-амперные характеристики биполярных транзисторов, тетродов и пентодов имеют качественно сходный характер, вольт-амперные характеристики вакуумных триодов отличаются относительно низким выходным сопротивлением.
  2. ↑ При допущении, что выходная цепь изолирована от входной, то есть ток сетки, затвора или базы равен нулю.
  3. ↑ Для биполярного транзистора нежелателен режим насыщения, для вакуумных ламп — упомянутый далее режим работы с сеточными токами, а для полевого транзистора — линейный (начальный) режим. Заход нагрузочной прямой в линейный режим полевого транзистора приводит к росту нелинейных искажений на границе линейного, нежелательного, режима и режима насыщения (в котором и должен работать усилитель на полевом транзисторе). Работа при обратной полярности (переполюсовке) выходных электродов исключается для приборов всех типов.
  4. ↑ Точнее, в область напряжений сетка-катод, при которых возникают заметные сеточные токи — что обычно происходит при напряжении сетка-катод около −1…-0,5 В и выше. Исключение составляют усилители мощности, специально спроектированные для работы с сеточными токами.
  1. 1 2 3 4 5 6 7 Цыкин, 1963, с. 62.
  2. 1 2 3 Попов и Николаев, 1972, с. 369.
  3. 1 2 Цыкин, 1963, с. 66.
  4. ↑ Цыкин, 1963, с. 61.
  5. 1 2 Гаврилов, 2016, с. 73.
  6. 1 2 Гаврилов, 2016, с. 75.
  7. 1 2 3 4 5 Цыкин, 1963, с. 64.
  8. ↑ Цыкин, 1963, с. 65.
  9. ↑ Цыкин, 1963, с. 67.
  10. 1 2 3 4 Цыкин, 1963, с. 68.
  • Гаврилов С. А. Схемотехника. Мастер-класс. — СПБ. : Наука и Техника, 2016. — 384 с. — ISBN 9785943878695.
  • Попов В. С., Николаев С. А. Общая электротехника с основами электроники. — М. : Энергия, 1972.
  • Цыкин, Г. С. Электронные усилители. — 2-е изд. — М. : Связьиздат, 1963. — 512 с. — 21,000 экз.

Нагрузочная характеристика карбюраторного двигателя | Двигатель автомобиля

Зависимости изменения параметров цикла от нагрузки показаны на рисунок а. Удельный расход топлива согласно уравнению зависит от произведения ni и nm.

На холостом ходу вся развиваемая в цилиндрах двигателя индикаторная мощность затрачивается на преодоление внутренних потерь, а эффективная мощность с коленчатого вала двигателя не «снимается», поэтому ge стримится к бесконечности (рис. б).

При переходе от холостого хода к частичным нагрузкам растут значения ni и nm, что приводит к уменьшению ge и в момент наибольшего значения произведения ni и nm удельный расход топлива ge достигает своего минимального значения. При полной нагрузке (ре = 100 %) и близкой к ней индикаторный КПД уменьшается, так как в этом случае двигатель работает на обогащенном составе смеси. который не обеспечивает полного сгорания топлива, т. е. не вся введенная теплота преобразуется в индикаторную работу. Поэтому удельный расход топлива увеличивается при нагрузках более 75 %. Поскольку одним из условий снятия нагрузочной характеристики является постоянство частоты вращения коленчатого вала, то понятно, что каждому значению частоты вращения будет соответствовать своя нагрузочная характеристика.

Нагрузочные характеристики карбюраторного двигателя

Рис. Нагрузочные характеристики карбюраторного двигателя: а — зависимости изменения основных параметров цикла от нагрузки; б — зависимости изменения показателей работы двигателя от нагрузки

На рисунке показаны нагрузочные характеристики одного из карбюраторных двигателей при разных частотах вращения коленчатого вала. Если значения минимальных удельных расходов топлива характеристик соединить касательной (штрихпунктирная линия), то получим линию, которая называется экономической или универсальной нагрузочной характеристикой.

В реальных условиях эксплуатации режимы работ, соответствующие экономической характеристике, используются крайне редко, так как в карбюраторном двигателе большинство нагрузок имеют повышенные значения ge, что является их недостатком.

Для улучшения топливной экономичности карбюраторного двигателя используют работу на обедненных смесях или вовсе отказываются от карбюратора и переходят на систему с впрыском топлива.

Так как по условию n = const, то часовой расход топлива Gт согласно уравнению зависит только от отношения nv/а.

Из нагрузочных характеристик видно, что с изменением нагрузки значительно меняется коэффициент наполнения nv, (от 0,18 до 0,23 на холостом ходу и от 0,78 до 0,82 при полной нагрузке). В результате часовой расход топлива растет пропорционально увеличению нагрузки, а резкое его повышение на нагрузках, близких к полной, объясняется началом работы экономайзера.

Нагрузочные характеристики двигателя ЗИЛ-131

Рис. Нагрузочные характеристики двигателя ЗИЛ-131 при различных значениях частоты вращения коленчатого вала: 1 — n = 3000 мин^-1; 2 — n = 2500 мин^-1; 3 — n = 2000 мин^-1; 4 — n = 1500 мин^-1; 5 — n = 1000 мин^-1

1. Нагрузочные характеристики двигателей

Нагрузочной характеристикой двигателя внутреннего сгорания называется комплекс зависимостей часового, удельного эффективного расходов топлива и других показателей двигателя от его нагрузки при постоянной частоте вращения коленчатого вала.

В качестве показателя величины нагрузки могут выступать эффективная мощность, крутящий момент или, чаще всего, среднее эффективное давление. Иногда характеристику строят по аргументу, представленному в относительных величинах, например в процентах от максимальной (номинальной) мощности. На характеристику, кроме графиков расходов топлива, обычно наносят также кривые часового расхода воздуха, коэффициента наполнения, коэффициента избытка воздуха и других показателей двигателя.

1.1.Нагркзочная характеристика дизеля

Н

Рис. 3.1. Зависимость показателей дизеля от нагрузки при n = const

агрузочная характеристика может сниматься как при регулировке топливного насоса высокого давления (ТНВД), установленной заводом изготовителем, так и с демонтированным устройством ограничения хода рейки ТНВД. Во втором случае цикловая подача топлива лимитируетсянаибольшей производительностью плунжерной пары насоса, что дает возможность обеспечить переобогащение смеси, выявить предел дымления и определить максимальную эффективную мощность, которую может развить дизель при данной частоте вращения коленчатого вала (рис. 3.1). На наиболее экономичном режиме (точка 1) дизель работает при полном бездымном сгорании при коэффициенте избытка воздуха α =1,5...2,0. С увеличением нагрузки, а следовательно, и расхода топлива GT смесь обогащается, коэффициент α приближается к значениям 1,2...1,3, что приводит к неполноте сгорания топлива и возникновению дымления из-за появления в отработавших газах несгоревших углеродистых частиц - сажи (точка 3). Достижение максимальной мощности (точка 4) связано с переходом к еще более богатым смесям, коэффициент избытка воздуха при этом приближается к значению α =1, отработавшие газы приобретают черную окраску, удельный эффективный расход топлива существенно повышается. Дальнейшее увеличение цикловой подачи топлива приводит к еще большему ухудшению сгорания и падению мощности. Работа дизеля на режимах, сопровождающихся дымлением, не допускается. Режим номинальной мощности, определяемый (устанавливаемый) заводом-изготовителем, должен гарантировать бездымную работу дизеля (точка 2).

Анализ нагрузочной характеристики дизеля

Нарис. 3.2. представлена нагрузочная характеристика дизеля. Часовой расход топлива GT с увеличением нагрузки ре при n=const возрастает, так как при перемещении органа управления топливного насоса увеличивается цикловая подача топлива. До нагрузки примерно 70...75% от максимальной (ре=0,5 МПа) зависимость GT= f(pe) близка к линейной. При меньших нагрузках вследствие появления неполноты сгорания крутизна кривой GT несколько увеличивается.

Часовой расход воздуха GB у дизеля с ростом нагрузки при n=const, должен быть практически постоянным. Однако увеличение нагрузки сопровождается общим возрастанием тепловой напряженности двигателя, особенно заметным при больших нагрузках и при максимальной мощности. По этой причине увеличивается подогрев свежего заряда, плотность его снижается, что приводит к некоторому уменьшению GB и соответственно коэффициента наполнения ηV.

К

Рис. 3.2. Нагрузочная

характеристика дизеля

оэффициент избытка воздуха α снижается от α = 5,0...6,0 на холостом ходу (ре=0) до α =1,75 на режиме наименьшего удельного эффективного расхода топлива (при ре = 0,56 МПа), поскольку наибольшая полнота сгорания топлива достигается, как правило, при α =1,6...1,8. Для получения максимальной (или номинальной) мощности смесь должна быть обогащена до αН=1,2...1,4 (в зависимости от типа камеры сгорания и способа смесеобразования). У исследуемого дизеля αН =1,5.

Минимальный удельный эффективный расход топлива, равный 230 г/(кВт ч), наблюдается при ре= 0,56 МПа. При меньшей нагрузке экономичность двигателя ухудшается, так как увеличивается относительная доля механических потерь (механический КПД ηМ падает). При больших нагрузках удельный расход топлива возрастает из-за увеличения неполноты сгорания топлива. На номинальном режиме ge=235 г/(кВтч).

Генератор независимого возбуждения. Нагрузочная характеристика. Правила построения нагрузочной характеристики?

⇐ ПредыдущаяСтр 7 из 30Следующая ⇒

Генератор с независимым возбуждением. В генераторе этого типа (рис. 8.43) ток возбуждения Iв не зависит от тока якоря Iа, который равен току нагрузки Iн . Ток Iв определяется только положением регулировочного реостата Rp.в , включенного в цепь обмотки возбуждения:

(8.56)

Iв = Uв /(Rв + Rp.в ),

где Uв — напряжение источника питания; Rв — сопротивление обмотки возбуждения; Rp.в — сопротивление регулировочного реостата

Обычно ток возбуждения невелик и составляет 1 — 3 % от номинального тока якоря. Основными характеристиками, определяющими свойства генераторов постоянного тока, являются характеристики: холостого хода, внешняя, регулировочная и нагрузочная.

Характеристикой холостого хода (рис. 8.44, а) называют зависимость U0 = f(Iв) при Iн = 0 и n= const. При холостом ходе машины, когда цепь нагрузки разомкнута, напряжение U0 на зажимах обмотки якоря равно ЭДС Е0 = сеФn. Частота вращения якоря n поддерживается неизменной, и напряжение при холостом ходе зависит только от магнитного потока Ф, т. е. тока возбуждения Iв . Поэтому характеристика U0 = f(Iв ) подобна магнитной характеристике Ф = f(Iв ). Характеристику холостого хода легко получить экспериментально. Для этого сначала устанавливают ток возбуждения таким, чтобы U0 ≈ l,25Uном , затем уменьшают ток возбуждения до нуля и снова увеличивают его до прежнего значения. При этом

Рис. 8.44. Характеристики генератора с независимым возбуждением

получаются восходящая и нисходящая ветви характеристики, которые выходят из одной точки. Расхождение ветвей объясняется наличием гистерезиса в магнитопроводе машины. При Iв = 0 в обмотке якоря потоком остаточного магнетизма индуцируется остаточная ЭДС Еост , которая составляет 2—4 % от Uном .

Внешней характеристикой (рис. 8.44,б) называют зависимость U = f(Iн ) при n = const и Iв = const. В режиме нагрузки напряжение генератора

(8.57)

U = Е -IаΣRa,

где ΣRa — сумма сопротивлений всех обмоток, включенных последовательно в цепь якоря (обмоток якоря, добавочных полюсов и компенсационной).

С увеличением нагрузки на уменьшение напряжения U влияют:

1) падение напряжения во внутреннем сопротивлении ΣRa машины;

2) уменьшение ЭДС Е в результате размагничивающего действия реакции якоря.

Изменение напряжения при переходе от режима номинальной нагрузки к режиму холостого хода

(8.58)

Δu = (U0 - Uном )/Uном .

Для генераторов с независимым возбуждением оно составляет 5-15%.

Регулировочной характеристикой (рис. 8.44, в) называют зависимость Iв = f(Iн ) при U = const иn = const. Она показывает, каким образом следует регулировать ток возбуждения, чтобы поддерживать постоянным напряжение генератора при изменении нагрузки. Очевидно, что в этом случае по мере роста нагрузки нужно увеличивать ток возбуждения.

Рис. 8.45. Нагрузочная характеристика генератора с независимым возбуждением и ее построение с помощью характеристического треугольника

Нагрузочной характеристикой (рис. 8.45, а) называют зависимость U = f(Iв ) при n = const и Iн= const. Нагрузочная характеристика при Iн = Iном (кривая 2) проходит ниже характеристики холостого хода (кривая 1), которую можно рассматривать как частный случай нагрузочной характеристики при Iн = 0. Разность ординат кривых 1 и 2 обусловлена размагничивающим действием реакции якоря и падением напряжения во внутреннем сопротивлении ΣRa машины.

Наглядное представление о влиянии этих факторов дает характеристический, или реактивный, треугольник ABC. Если к отрезку аА, равному в определенном масштабе напряжению U, при некотором токе нагрузки Iн и токе возбуждения Iв прибавить отрезок АВ, равный в том же масштабе падению напряжения Iа ΣRa в генераторе, то получим отрезок аВ, равный ЭДС Е.

При холостом ходе ЭДС E индуцируется в обмотке якоря при меньшем токе I'в, соответствующем абсциссе точки С. Следовательно, отрезок ВС характеризует размагничивающее действие реакции якоря в масштабе тока возбуждения. При неизменном токеIн катет АВ характеристического треугольника является постоянным; катет ВС зависит не только от тока Iн , но и от степени насыщения магнитной системы, т. е. от тока возбуждения Iв . Однако в ряде случаев влиянием тока возбуждения пренебрегают и принимают, что отрезок ВСпропорционален только току Iн.

Такое допущение позволяет строить нагрузочные характеристики при разных токах, изменяя лишь величину всех сторон треугольника ABC. Если вершина С характеристического треугольника, построенного для некоторого тока Iн ,

Рис. 8.46. Графики построения внешней (а) и регулировочной (б) характеристик генератора с независимым возбуждением с помощью характеристического треугольника

расположена на характеристике 1 холостого хода (рис. 8.45,б), а затем по этой характеристике перемещается треугольник ABC так, что катет ВС остается параллельным оси абсцисс, то след точки А изображает приближенно искомую нагрузочную характеристику 2 при заданном значении тока Iн . Эта характеристика несколько отличается от реальной характеристики 3(которая может быть снята опытным путем), так как величина катета ВС характеристического треугольника изменяется из-за изменения условий насыщения. Используя характеристику холостого хода с помощью характеристического треугольника, можно построить и другие характеристики генератора: внешнюю и регулировочную.

При построении внешней характеристики исходят из характеристики холостого хода 1 (рис. 8.46, а). Взяв точку D на оси ординат, соответствующую номинальному напряжению Uном , через нее проводят прямую AD, параллельную оси абсцисс На этой прямой располагают вершину Ахарактеристического треугольника, снятого при номинальном токе якоря так, чтобы катет АВ был параллелен оси ординат, а вершина С находилась на характеристике 1. Затем, опустив перпендикуляр из вершины А на ось абсцисс, находят точку Ак , соответствующую номинальному току возбуждения Iв.ном .

При определении Iв.ном учитывают, что под действием реакции якоря ЭДС при нагрузке меньше, чем при холостом ходе, т. е. создается как бы меньшим током возбуждения. Уменьшению тока Iв соответствует отрезок ВС, характеризующий размагничивающее действие реакции якоря. Напряжение при номинальном токе также меньше ЭДС на величину падения напряжения ΣRa, которому соответствует катет АВ.

При построении искомой зависимости 2, т. е. напряжения U от тока нагрузки Iа , две ее точки можно легко определить: номинальному току Iаном соответствует номинальное напряжение Uном(точка b), а току якоря, равному нулю (режим холостого хода), — напряжение U0 (точка а), равное ЭДС при токе возбуждения Iв.ном . Другие точки (с, d и т. п.) внешней характеристики можно построить, изменяя все стороны характеристического треугольника пропорционально изменению тока якоря и располагая его так, чтобы катеты А'В', А''В",... оставались параллельными оси ординат. При этом точки В, В', В" должны располагаться на вертикальной линии Ак В,соответствующей току возбуждения Iв.ном , а точки С, С', С",...— на характеристике холостого хода1. Тогда ординаты точек А', А"... будут определять искомую величину напряжения при токах нагрузки Iаl = IаномА'В'/АВ, Iа2 = IаномА"В"/АВ и т. п. Обычно при построении внешней характеристики проводят только гипотенузы характеристических треугольников АС, А"С",...,параллельные АС до пересечения с характеристикой холостого хода и с линией АкВ . Ординаты найденных точек А', А"... определяют искомые величины напряжений (т. е. точки с, d внешней характеристики 2) при токах нагрузки Iаном , Iаl , Iа2 .

Если из точки Ак провести прямую, параллельную АС до пересечения с характеристикой холостого хода в точке Ск , то можно получить величину тока Iк = IаномАк Ск /АС, которая в 5 —15 раз превышает номинальный ток. Зная ток к. з., можно рассчитать максимальный момент, механическую прочность вала и выбрать параметры аппаратуры защиты. Экспериментальное определение тока к. з. затруднительно, так как в процессе проведения опыта может возникнуть круговой огонь.

Построенная характеристика является приближенной. Основная ее погрешность обусловлена тем, что размагничивающее действие реакции якоря (т. е. катет ВС) не пропорционально току якоря. Обычно приведенное построение дает несколько заниженное значение напряжения и тока к. з.

При построении регулировочной характеристики (рис. 8.46,б) сначала находят ток возбуждения Iв0 , соответствующий номинальному напряжению при холостом ходе. Чтобы определить ток возбуждения при номинальном токе нагрузки, вершину А характеристического треугольника (соответствующего номинальной нагрузке) располагают на прямой 2, параллельной оси абсцисс и находящейся от нее на расстоянии Uном . Катет АВ должен быть параллелен оси ординат, а вершина С должна располагаться на характеристике холостого хода 1.Абсцисса вершины А дает искомую величину тока возбуждения. Доказательство справедливости этого построения приведено при построении внешней характеристики. Проводя прямые, параллельные гипотенузе АС, получаем отрезки А'С', А"С",..., заключенные между характеристикой холостого хода 1 и прямой 2, соответствующей условию U = Uном = const. Эти отрезки представляют собой гипотенузы характеристических треугольников при различных токах нагрузки. Искомая регулировочная характеристика Iв = f(Iа )кривая 3 — построена в нижнем координатном углу. Значения тока возбуждения определяются абсциссами точек А, А', А",..., которым соответствуют токи нагрузки, пропорциональные длинам отрезков АС, А'С', А''С",....

Достоинством генераторов с независимым возбуждением являются возможность регулирования напряжения в широких пределах от нуля до Uмахпутем изменения тока возбуждения и сравнительно малое изменение напряжения под нагрузкой. Однако для питания обмотки возбуждения таких генераторов требуются внешние источники постоянного тока.

Генераторы с независимым возбуждением используют только при большой мощности, а также при малой мощности, но низком напряжении. Независимо от значения напряжения на якоре обмотку возбуждения рассчитывают на стандартное напряжение постоянного тока 110 или 220 В для упрощения регулирующей аппаратуры.




Нагрузочная характеристика (электроника) — Карта знаний

Источник: Википедия

Связанные понятия

Электри́ческий импеда́нс (ко́мплексное электри́ческое сопротивле́ние) (англ. impedance от лат. impedio «препятствовать») — комплексное сопротивление между двумя узлами цепи или двухполюсника для гармонического сигнала. Умножи́тель напряже́ния ба́за-эми́ттер (умножитель Vбэ) — двухвыводной электронный источник опорного напряжения, пропорционального напряжению на прямо смещённом эмиттерном переходе биполярного транзистора (Vбэ). Простейший умножитель Vбэ состоит из резистивного делителя напряжения, задающего коэффициент умножения, и управляемого им биполярного транзистора. При подключении умножителя Vбэ к источнику тока падение напряжения на умножителе, как и само Vбэ, комплементарно абсолютной температуре: с ростом... Электри́ческий адмитта́нс (фр. admittance от лат. admittere пропускать, впускать) — комплексная проводимость двухполюсника для гармонического сигнала. В русскоязычной литературе этот термин обычно не применяется — вместо него употребляется термин «комплексная проводимость» (см., например, (Бессонов 1978)).

Подробнее: Адмиттанс

Дифференциа́льный усили́тель — электронный усилитель с двумя входами, выходной сигнал которого равен разности входных напряжений, умноженной на константу. Применяется в случаях, когда необходимо выделить небольшую разность напряжений на фоне значительной синфазной составляющей. Стабилиза́тор напряже́ния (англ. Voltage regulator) — электромеханическое или электрическое (электронное) устройство, имеющее вход и выход по напряжению, предназначенное для поддержания выходного напряжения в узких пределах, при существенном изменении входного напряжения и выходного тока нагрузки. Дели́тель то́ка — простейшая линейная электрическая цепь, выходной ток которой представляет собой часть входного тока. Это обеспечивается распределением тока между ветвями делителя. Сглаживающий фильтр — устройство для сглаживания пульсаций после выпрямления переменного тока. Простейшим сглаживающим фильтром является электролитический конденсатор большой ёмкости, включённый параллельно нагрузке. Нередко параллельно электролитическому конденсатору устанавливается плёночный (или керамический) ёмкостью в доли или единицы микрофарада для устранения высокочастотных помех. Автогенератор — электронный генератор с самовозбуждением.Автогенератор вырабатывает электрические (электромагнитные) колебания, поддерживающиеся подачей по цепи положительной обратной связи части переменного напряжения с выхода автогенератора на его вход. Это будет обеспечено тогда, когда нарастание колебательной энергии будет превосходить потери (когда петлевой коэффициент усиления больше 1). При этом амплитуда начальных колебаний будет нарастать. И́мпульсный стабилиза́тор напряже́ния (ключево́й стабилизатор напряжения, используются также названия импульсный преобразователь, импульсный источник питания) — стабилизатор напряжения, в котором регулирующий элемент (ключ) работает в импульсном режиме, то есть регулирующий элемент периодически открывается и закрывается. Вторичный источник электропитания — устройство, которое преобразует параметры электроэнергии основного источника электроснабжения (например, промышленной сети) в электроэнергию с параметрами, необходимыми для функционирования вспомогательных устройств.Источник электропитания может быть интегрированным в общую схему (обычно в простых устройствах; либо когда недопустимо даже незначительное падение напряжения на подводящих проводах — например материнская плата компьютера имеет встроенные преобразователи... Вну́треннее сопротивле́ние двухполюсника — импеданс в эквивалентной схеме двухполюсника, состоящей из последовательно включённых генератора напряжения и импеданса (см. рисунок). Понятие применяется в теории цепей при замене реального источника идеальными элементами, то есть при переходе к эквивалентной схеме. Измери́тельный трансформа́тор — электрический трансформатор, предназначенный для измерения и контроля (например, в системах релейной защиты сетей) напряжения, тока или фазы электрического сигнала переменного тока промышленной частоты (50 или 60 Гц) в контролируемой цепи. Полупроводнико́вый стабилитро́н, или диод Зенера — полупроводниковый диод, работающий при обратном смещении в режиме пробоя. До наступления пробоя через стабилитрон протекают незначительные токи утечки, а его сопротивление весьма высоко. При наступлении пробоя ток через стабилитрон резко возрастает, а его дифференциальное сопротивление падает до величины, составляющей для различных приборов от долей oма до сотен oм. Поэтому в режиме пробоя напряжение на стабилитроне поддерживается с заданной точностью...

Подробнее: Стабилитрон

Потенцио́метр (от лат. potentia — «сила» и греч. μετρεω — «измеряю») — измерительный прибор, предназначенный для определения напряжения путём сравнения двух, в общем случае, различных напряжений или ЭДС с помощью компенсационного метода. При известном одном из напряжений позволяет определять второе напряжение. Ваттметр (ватт + др.-греч. μετρεω - «измеряю») — измерительный прибор, предназначенный для определения мощности электрического тока или электромагнитного сигнала. Омме́тр (Ом + др.-греч. μετρεω «измеряю») — измерительный прибор непосредственного отсчёта для определения электрических активных (омических) сопротивлений. Обычно измерение производится по постоянному току, однако, в некоторых электронных омметрах возможно использование переменного тока. Разновидности омметров: мегаомметры, гигаомметры, тераомметры, миллиомметры, микроомметры, различающиеся диапазонами измеряемых сопротивлений. Симистор (симметричный триодный тиристор) или триак (от англ. TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ). В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Однако... Вольтметр (вольт + греч. μετρεω «измеряю») — измерительный прибор непосредственного отсчёта для определения напряжения или ЭДС в электрических цепях. Подключается параллельно нагрузке или источнику электрической энергии. Трансформа́тор напряже́ния — одна из разновидностей трансформатора, предназначенная не для преобразования электрической мощности для питания различных устройств, а для гальванической развязки цепей высокого напряжения (6 кВ и выше) от низкого (обычно 100 В) напряжения вторичных обмоток. Векторная широтно-импульсная модуляция (не путать с векторным управлением) — один из методов широтно-импульсной модуляции (ШИМ), использующийся для управления активными трёхфазными преобразователями. При векторной модуляции вычисляются не мгновенные значения напряжений, прикладываемых к обмоткам, а моменты подключения обмоток к силовому мосту с целью формирования заданного вектора напряжения (что и отображено в названии метода). Существуют различные способы векторной ШИМ. В частности, некоторые способы... Измери́тельный усили́тель, инструмента́льный усилитель, электрометри́ческий вычитатель — разновидность дифференциального усилителя с улучшенными параметрами, пригоден для использования в измерительном и тестирующем оборудовании. Фазовращатель (электротехника) — электрическое устройство в виде четырехполюсника, в котором обеспечивается постоянный заданный сдвиг фаз между переменными напряжениями на его входе и выходе. Стабилизатор переменного напряжения (англ. Voltage regulator) — устройство, на выходе которого обеспечивается стабильное переменное напряжение той же частоты, что и питающее напряжение.:6Стабилизированный источник переменного напряжения (англ. Power conditioner) — устройство, на выходе которого обеспечивается переменное стабильное напряжение с частотой, не зависящей от частоты питающего напряжения.:6Кроме стабилизаторов, на выходе которых напряжение соответствует номинальному напряжению на входе... Генератор сигналов — это устройство, позволяющее получать сигнал определённой природы (электрический, акустический и т. д.), имеющий заданные характеристики (форму, энергетические или статистические характеристики и т. д.). Генераторы широко используются для преобразования сигналов, для измерений и в других областях. Состоит из источника (устройства с самовозбуждением, например, усилителя, охваченного цепью положительной обратной связи) и формирователя (например, электрического фильтра). Потенцио́метр — регулируемый делитель электрического напряжения, переменный резистор. Представляет собой, как правило, резистор с подвижным отводным контактом (движком). С развитием электронной промышленности помимо «классических» потенциометров появились также цифровые потенциометры. Такие потенциометры, как правило, представляют собой интегральные схемы, не имеющие подвижных частей и позволяющие программно регулировать собственное сопротивление с заданным шагом. Инве́ртор (лат. inverto — поворачивать, переворачивать) — элемент вычислительной машины, осуществляющий определённые преобразования сигнала. Различают два основных типа инверторов: аналоговые и цифровые. Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей переменного тока, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°). Мультивибратор Ройера или генератор Ройера (Встречается написание Роера), как правило транзисторный релаксационный генератор колебаний с формой импульсов близкой к прямоугольной, использующий трансформатор или индуктивность с насыщающимся сердечником. Схема изобретена в 1954 году Джоржем Роером (George H. Royer). Запатентована в 1957 году (US2783384). Импульсный трансформатор (ИТ) — трансформатор, предназначенный для преобразования тока и напряжения импульсных сигналов с минимальным искажением исходной формы импульса на выходе. Частотоме́р — радиоизмерительный прибор для определения частоты периодического процесса или частот гармонических составляющих спектра сигнала. Интегра́тор, блок интегри́рования — техническое устройство, выходной сигнал (выходная величина, выходной параметр) которого пропорционален интегралу, обычно по времени, от входного сигнала. Токовое зеркало — элемент транзисторной схемотехники, представляющий собой генератор тока, управляемый входным током, в котором входной и выходной токи имеют разное направление и один общий вывод источника питания, причем соотношение токов (коэффициент отражения) сохраняется постоянным в широком диапазоне и мало зависит от напряжения и температуры. Классическая схема токового зеркала содержит два транзистора одинаковой проводимости с резисторами в коллекторных цепях. Соотношение номиналов резисторов... Трансформа́тор то́ка — трансформатор, первичная обмотка которого подключена к источнику тока, а вторичная обмотка замыкается на измерительные или защитные приборы, имеющие малые внутренние сопротивления. Реоста́т (потенциометр, переменное сопротивление, переменный резистор; от др.-греч. ῥέος «поток» и στατός «стоя́щий») — электрический аппарат, изобретённый Иоганном Христианом Поггендорфом, служащий для регулировки силы тока и напряжения в электрической цепи путём получения требуемой величины сопротивления. Как правило, состоит из проводящего элемента с устройством регулирования электрического сопротивления. Изменение сопротивления может осуществляться как плавно, так и ступенчато. Метод эквивалентного генератора — метод преобразования электрических цепей, в котором схемы, состоящие из нескольких ветвей с источниками ЭДС, приводятся к одной ветви с эквивалентным значением. Дифференциа́тор, устройство дифференцирующее — аналоговый функциональный блок в АВМ структурного типа. Тахогенера́тор (от др.-греч. τάχος — «быстрый», «скорость» и лат. generator «производитель») — электрическая микромашина, измерительный генератор постоянного или переменного тока, предназначенный для преобразования мгновенного значения частоты (угловой скорости) вращения вала в однозначно связанный со скоростью электрический сигнал. Мультивибра́тор — релаксационный генератор электрических прямоугольных колебаний с короткими фронтами. Компара́тор аналоговых сигналов (от лат. comparare — сравнивать) — сравнивающее устройство) — электронная схема, принимающая на свои входы два аналоговых сигнала и выдающая сигнал высокого уровня, если сигнал на неинвертирующем входе («+») больше, чем на инвертирующем (инверсном) входе («−»), и сигнал низкого уровня, если сигнал на неинвертирующем входе меньше, чем на инверсном входе. Значение выходного сигнала компаратора при равенстве входных напряжений, в общем случае не определено. Обычно в логических... В связи с тем, что электрические сигналы представляют собой изменяющиеся во времени величины, в электротехнике и радиоэлектронике используются по необходимости разные способы представлений напряжения и силы электрического тока...

Подробнее: Список параметров напряжения и силы электрического тока

Аттенюа́тор (фр. attenuer — смягчить, ослабить) — устройство для плавного, ступенчатого или фиксированного понижения интенсивности электрических или электромагнитных колебаний, как средство измерений является мерой ослабления электромагнитного сигнала, но также его можно рассматривать и как измерительный преобразователь. ГОСТ 28324-89 определяет аттенюатор как элемент для снижения уровня сигналов, обеспечивающий фиксированное или регулируемое затухание. Переменный конденсатор (конденсатор переменной ёмкости, КПЕ) — конденсатор, электрическая ёмкость которого может изменяться механическим способом, либо электрически, под действием изменения приложенного к обкладкам напряжения. Переменные конденсаторы применяются в колебательных контурах и других частотозависимых цепях для изменения их резонансной частоты — например, во входных и гетеродинных цепях радиоприёмников, в цепях коррекции АЧХ усилителей, генераторах, антенных устройствах. Ёмкость переменных... Выпрями́тель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования входного электрического тока переменного направления в ток постоянного направления (то есть однонаправленный ток), в частном случае — в постоянный выходной электрический ток. Фа́зовое регули́рование напряжения — способ регулирования переменного электрического напряжения, обычно синусоидальной формы, путём изменения угла открытия тиристоров, симисторов, тиратронов или иных ключевых электронных приборов, на которых собран выпрямитель или электрический ключ. Фа́зовый дете́ктор, фазовый компара́тор (ФД) — электронное устройство, сравнивающее фазы двух входных сигналов равных или близких частот. Варика́п (акроним от англ. vari(able) — «переменный», и cap(acitance) — « ёмкость») — электронный прибор, полупроводниковый диод, работа которого основана на зависимости барьерной ёмкости p-n-перехода от обратного напряжения. Биполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзисторов. В полупроводниковой структуре сформированы два p-n-перехода, перенос заряда через которые осуществляется носителями двух полярностей — электронами и дырками. Именно поэтому прибор получил название «биполярный» (от англ. bipolar), в отличие от полевого (униполярного) транзистора.

Отправить ответ

avatar
  Подписаться  
Уведомление о