Грунт кислотный двухкомпонентный: для чего нужна эта грунтовка?

Содержание

аналитика, советы, помощь с выбором материалов.

[Error] 
Maximum function nesting level of '256' reached, aborting! (0)
/home/bitrix/www/bitrix/modules/main/lib/config/option.php:430
#0: Bitrix\Main\Config\Option::getDefaultSite()
	/home/bitrix/www/bitrix/modules/main/lib/config/option.php:43
#1: Bitrix\Main\Config\Option::get(string, string, string, boolean)
	/home/bitrix/www/bitrix/modules/main/classes/general/option.php:30
#2: CAllOption::GetOptionString(string, string, string)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:2699
#3: CAllMain->get_cookie(string)
	/home/bitrix/www/bitrix/modules/main/lib/composite/engine.php:1321
#4: Bitrix\Main\Composite\Engine::onEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:480
#5: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/tools.php:3880
#6: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#7: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#8: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#9: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#10: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#11: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#12: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#13: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#14: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#15: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#16: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#17: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#18: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#19: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#20: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#21: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#22: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#23: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#24: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#25: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#26: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#27: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#28: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#29: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#30: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#31: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#32: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#33: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#34: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#35: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#36: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#37: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#38: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#39: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#40: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#41: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#42: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#43: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#44: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#45: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#46: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#47: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#48: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#49: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#50: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#51: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#52: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#53: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#54: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#55: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#56: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#57: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#58: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#59: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#60: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#61: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#62: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#63: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#64: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#65: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#66: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#67: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#68: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#69: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#70: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#71: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#72: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#73: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#74: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#75: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#76: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#77: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#78: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#79: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#80: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#81: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#82: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#83: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#84: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#85: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#86: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#87: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#88: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#89: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#90: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#91: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#92: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#93: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#94: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#95: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#96: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#97: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#98: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#99: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#100: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#101: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#102: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#103: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#104: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#105: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#106: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#107: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#108: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#109: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#110: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#111: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#112: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#113: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#114: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#115: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#116: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#117: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#118: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#119: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#120: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#121: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#122: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#123: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#124: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#125: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#126: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#127: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#128: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#129: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#130: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#131: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#132: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#133: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#134: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#135: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#136: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#137: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#138: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#139: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#140: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#141: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#142: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#143: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#144: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#145: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#146: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#147: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#148: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#149: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#150: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#151: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#152: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#153: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#154: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#155: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#156: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#157: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#158: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#159: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#160: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#161: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#162: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#163: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#164: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#165: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#166: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#167: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#168: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#169: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#170: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#171: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#172: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#173: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#174: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#175: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#176: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#177: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#178: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#179: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#180: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#181: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#182: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#183: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#184: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#185: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#186: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#187: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#188: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#189: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#190: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#191: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#192: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#193: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#194: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#195: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#196: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#197: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#198: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#199: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#200: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#201: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#202: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#203: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#204: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#205: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#206: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#207: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#208: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#209: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#210: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#211: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#212: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#213: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#214: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#215: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#216: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#217: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#218: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#219: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#220: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#221: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#222: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#223: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#224: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#225: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#226: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#227: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#228: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#229: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#230: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#231: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#232: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#233: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#234: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#235: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#236: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#237: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#238: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#239: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#240: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#241: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#242: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#243: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3465
#244: CAllMain::FinalActions(string)
	/home/bitrix/www/bitrix/modules/main/include/epilog_after.php:54
#245: require(string)
	/home/bitrix/www/bitrix/modules/main/include/epilog.php:3
#246: require_once(string)
	/home/bitrix/www/bitrix/footer.php:4
#247: require(string)
	/home/bitrix/www/404.php:53
#248: require(string)
	/home/bitrix/www/bitrix/modules/iblock/lib/component/tools.php:66
#249: Bitrix\Iblock\Component\Tools::process404(string, boolean, boolean, boolean, string)
	/home/bitrix/www/bitrix/components/bitrix/news/component.php:145
#250: include(string)
	/home/bitrix/www/bitrix/modules/main/classes/general/component.php:605
#251: CBitrixComponent->__includeComponent()
	/home/bitrix/www/bitrix/modules/main/classes/general/component.php:680
#252: CBitrixComponent->includeComponent(string, array, boolean, boolean)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:1039
#253: CAllMain->IncludeComponent(string, string, array, boolean)
	/home/bitrix/www/articles/index.php:133
#254: include_once(string)
	/home/bitrix/www/bitrix/modules/main/include/urlrewrite.php:159
#255: include_once(string)
	/home/bitrix/www/bitrix/urlrewrite.php:2

аналитика, советы, помощь с выбором материалов.

[Error] 
Maximum function nesting level of '256' reached, aborting! (0)
/home/bitrix/www/bitrix/modules/main/lib/config/option.php:430
#0: Bitrix\Main\Config\Option::getDefaultSite()
	/home/bitrix/www/bitrix/modules/main/lib/config/option.php:43
#1: Bitrix\Main\Config\Option::get(string, string, string, boolean)
	/home/bitrix/www/bitrix/modules/main/classes/general/option.php:30
#2: CAllOption::GetOptionString(string, string, string)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:2699
#3: CAllMain->get_cookie(string)
	/home/bitrix/www/bitrix/modules/main/lib/composite/engine.php:1321
#4: Bitrix\Main\Composite\Engine::onEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:480
#5: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/tools.php:3880
#6: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#7: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#8: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#9: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#10: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#11: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#12: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#13: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#14: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#15: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#16: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#17: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#18: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#19: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#20: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#21: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#22: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#23: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#24: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#25: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#26: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#27: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#28: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#29: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#30: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#31: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#32: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#33: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#34: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#35: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#36: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#37: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#38: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#39: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#40: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#41: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#42: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#43: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#44: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#45: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#46: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#47: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#48: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#49: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#50: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#51: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#52: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#53: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#54: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#55: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#56: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#57: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#58: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#59: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#60: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#61: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#62: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#63: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#64: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#65: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#66: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#67: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#68: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#69: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#70: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#71: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#72: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#73: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#74: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#75: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#76: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#77: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#78: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#79: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#80: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#81: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#82: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#83: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#84: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#85: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#86: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#87: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#88: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#89: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#90: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#91: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#92: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#93: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#94: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#95: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#96: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#97: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#98: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#99: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#100: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#101: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#102: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#103: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#104: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#105: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#106: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#107: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#108: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#109: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#110: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#111: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#112: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#113: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#114: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#115: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#116: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#117: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#118: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#119: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#120: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#121: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#122: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#123: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#124: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#125: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#126: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#127: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#128: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#129: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#130: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#131: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#132: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#133: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#134: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#135: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#136: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#137: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#138: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#139: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#140: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#141: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#142: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#143: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#144: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#145: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#146: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#147: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#148: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#149: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#150: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#151: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#152: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#153: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#154: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#155: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#156: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#157: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#158: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#159: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#160: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#161: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#162: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#163: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#164: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#165: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#166: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#167: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#168: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#169: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#170: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#171: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#172: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#173: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#174: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#175: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#176: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#177: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#178: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#179: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#180: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#181: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#182: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#183: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#184: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#185: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#186: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#187: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#188: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#189: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#190: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#191: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#192: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#193: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#194: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#195: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#196: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#197: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#198: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#199: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#200: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#201: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#202: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#203: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#204: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#205: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#206: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#207: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#208: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#209: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#210: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#211: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#212: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#213: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#214: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#215: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#216: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#217: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#218: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#219: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#220: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#221: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#222: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#223: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#224: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#225: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#226: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#227: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#228: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#229: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#230: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#231: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#232: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#233: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#234: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#235: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#236: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#237: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#238: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#239: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#240: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#241: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#242: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#243: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3465
#244: CAllMain::FinalActions(string)
	/home/bitrix/www/bitrix/modules/main/include/epilog_after.php:54
#245: require(string)
	/home/bitrix/www/bitrix/modules/main/include/epilog.php:3
#246: require_once(string)
	/home/bitrix/www/bitrix/footer.php:4
#247: require(string)
	/home/bitrix/www/404.php:53
#248: require(string)
	/home/bitrix/www/bitrix/modules/iblock/lib/component/tools.php:66
#249: Bitrix\Iblock\Component\Tools::process404(string, boolean, boolean, boolean, string)
	/home/bitrix/www/bitrix/components/bitrix/news/component.php:145
#250: include(string)
	/home/bitrix/www/bitrix/modules/main/classes/general/component.php:605
#251: CBitrixComponent->__includeComponent()
	/home/bitrix/www/bitrix/modules/main/classes/general/component.php:680
#252: CBitrixComponent->includeComponent(string, array, boolean, boolean)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:1039
#253: CAllMain->IncludeComponent(string, string, array, boolean)
	/home/bitrix/www/articles/index.php:133
#254: include_once(string)
	/home/bitrix/www/bitrix/modules/main/include/urlrewrite.php:159
#255: include_once(string)
	/home/bitrix/www/bitrix/urlrewrite.php:2

Разновидности и особенности применения кислотного грунта

Что такое кислотный грунт, и для каких целей он необходим? Его еще довольно часто могут называть фосфатирующим либо вош-праймером, а также реактивным. Обладает он высокими антикоррозионными и адгезивными свойствами.

Блок: 1/21 | Кол-во символов: 216
Источник: https://blogokraske.ru/gruntovki/vidyi-gruntovok/kislotnyj-grunt-dlya-avto-vidy-svojstva-i-metody-naneseniya.html

Кислотный, фосфатирующий, травящий или реактивный грунт?

Все эти назва­ния, так или ина­че, обо­зна­ча­ют грунт, в соста­ве кото­ро­го есть кис­ло­та. На англий­ском язы­ке суще­ству­ет три раз­ных назва­ния кис­лот­ных грун­тов, кото­рые ука­зы­ва­ют­ся так­же и на упа­ков­ках, про­да­ю­щих­ся в Рос­сии. Etch или etching primer – тра­вя­щий грунт, self etch/etching primer – тра­вя­щий грунт, име­ю­щий ингре­ди­ен­ты, кото­рые сра­зу после дей­ствия кис­ло­ты въеда­ют­ся в металл, созда­вая анти­кор­ро­зи­он­ную защи­ту, wash primer – реак­тив­ный грунт, кото­рый так­же содер­жит кис­ло­ту и, по тео­рии, пред­на­зна­чен для нане­се­ния на новый металл, не содер­жа­щий ста­рой шпа­клёв­ки и крас­ки, для повы­ше­ния адге­зии (в осо­бен­но­сти цвет­ных метал­лов, к при­ме­ру аллю­ми­ния).

Неко­то­рые кис­лот­ные грун­ты недо­ста­точ­но «силь­ные», что­бы дей­ство­вать на сталь. Нуж­но смот­реть тех­ни­че­ские харак­те­ри­сти­ки про­дук­та.

У раз­ных про­из­во­ди­те­лей раз­ные фор­му­лы грун­тов и инструк­ции по при­ме­не­нию. Пер­во­на­чаль­но, тра­вя­щие грун­ты не содер­жа­ли ком­по­нен­тов, повы­ша­ю­щих коро­зи­он­ную защи­ту и, тем более, напол­ни­те­лей, запол­ня­ю­щих мел­кие неров­но­сти. Сей­час мож­но встре­тить кис­лот­ные грун­ты раз­ных про­из­во­ди­те­лей, кото­рые содер­жат и анти­кор­ро­зи­он­ные добав­ки и могут быть одно­вре­мен­но напол­ня­ю­щи­ми. Чаще все­го, всё же, хоро­ший кис­лот­ный грунт спо­со­бен хими­че­ски дей­ство­вать на любой металл, под­го­тав­ли­вая его для сле­ду­ю­ще­го слоя напол­ня­ю­ще­го грун­та, а так­же пре­об­ра­зу­ет неболь­шое коли­че­ство труд­но счи­ща­е­мой ржав­чи­ны и пас­си­ви­ру­ет поверх­ность метал­ла, делая его не актив­ным к окис­ле­нию, а сле­до­ва­тель­но к кор­ро­зии.

Блок: 2/11 | Кол-во символов: 1752
Источник: https://kuzov.info/kislotniy-grunt-dlya-avto/

Характеристики и свойства кислотного грунта для авто

Основным компонентом кислотного грунта для авто является фосфорная кислота, которая при нанесении состава на металлические поверхности образует на них прочную надежную пленку, не пропускающую влагу и воздух. Основными характеристиками кислотной грунтовки является высокая адгезия и уникальные антикоррозионные свойства.

Помимо ортофосфорной кислоты грунтовка содержит соединения марганца и цинка, которые выступают в роли протекторов. При химическом взаимодействии с металлом они блокируют появление коррозии, а при локальном повреждении кузова авто — дальнейшее распространение ржавчины. Принцип действия кислотного грунтовочного состава основан на механизме пассивации металла.

Сфера применения кислотного грунта широкая, он может наносится на металлические поверхности разного типа. Кислотный грунт относится к категории первичных реактивных грунтовок, после его нанесения на металлические кузовные элементы авто требуется использование вторичной грунтовочной пасты.

В отличие от акрилового или на кислотную грунтовку нельзя наносить финишное лакокрасочное покрытие.

К основным характеристикам и свойствам кислотной реактивной пасты относятся:

  • Износоустойчивость.
  • Стойкость к действию влаги, появлению и распространению очагов коррозии металла.
  • Гигроскопичность.
  • Высокая адгезия.
  • Термостойкость.
  • Устойчивость к действию атмосферных осадков (дождя, снега) и других негативных внешних факторов.
  • Стойкость к действию агрессивных химических веществ (в том числе соли).

Блок: 2/16 | Кол-во символов: 1535
Источник: https://stranas.ru/acid-primer-instructions-for-use-acidic-primer-for-cars/

Реактивный грунт (Wash primer)

Реак­тив­ный грунт (Wash primer) и кис­лот­ные грун­ты похо­жи по сво­е­му дей­ствию. Wash primer нано­сит­ся толь­ко на чистый металл. Он не запол­ня­ет рис­ки и мел­кие неров­но­сти и тре­бу­ет обя­за­тель­но­го нане­се­ния поверх него акри­ло­во­го грун­та. Wash primer – это орто­фос­фор­ная кис­ло­ты в рас­тво­ре поли­ви­нил­бу­ти­раль­но­го поли­ме­ра, изо­про­пи­ло­во­го спир­та и дру­гих ингре­ди­ен­тов. Такой грунт нано­сит­ся тон­ким сло­ем, созда­вая сухую плён­ку, тол­щи­ной 8–13 мик­рон. Этот грунт дела­ет про­цесс покрас­ки более эффек­тив­ным и добав­ля­ет метал­лу анти­кор­ро­зи­он­ные свой­ства. В даль­ней­шем, при экс­плу­а­та­ции, даже при незна­чи­тель­ном повре­жде­нии лако­кра­соч­но­го слоя, металл, обра­бо­тан­ный реак­тив­ным грун­том не будет ржа­веть.

Этот грунт пас­си­ви­ру­ет металл перед нане­се­ни­ем напол­ня­ю­ще­го грун­та. Поверх­ность метал­ла ста­но­вит­ся неак­тив­ной к кис­ло­ро­ду, содер­жа­ще­му­ся в воз­ду­хе и воде. Созда­ёт­ся очень тон­кая плён­ка, он пере­хо­дит в пас­сив­ное состо­я­ние, и тор­мо­зят­ся про­цес­сы кор­ро­зии. Так­же, созда­ёт­ся хоро­шее осно­ва­ние для нане­се­ния сле­ду­ю­ще­го слоя напол­ня­ю­ще­го грун­та.

Wash primer обыч­но реко­мен­ду­ют нано­сить на алю­ми­ний и дру­гие метал­лы для улуч­ше­ния адге­зии с после­ду­ю­щим покры­ти­ем. На алю­ми­нии и оцин­ко­ван­ном метал­ле, без под­го­тов­ки этим прай­ме­ром, покры­тие пло­хо дер­жит­ся.

Блок: 3/11 | Кол-во символов: 1457
Источник: https://kuzov.info/kislotniy-grunt-dlya-avto/

В чем особенность состава?

Для борьбы со ржавчиной кислотная грунтовка является сильным средством, поскольку она способна полностью её уничтожить. Желая соблюдать технологию обработки автомобиля, лучше отдавать предпочтение дорогому кислотному грунту.

На сварные швы состав лучше нанести кистью, а вот большую площадь металлического покрытия лучше обработать методом распыления.

Кислотный грунт представляет собой смесь фосфорной кислоты и цинка, он является первичным и распыляется непосредственно на голый металл. Перед тем как его нанести, поверхность металла требуется обезжирить, чтобы убрать остатки коррозии. Высыхает кислотный грунт в течение пятнадцати минут при температуре 20 градусов.

После высыхания необходимо обработать поверхность выравнивающим акриловым грунтом. На старую шпаклевку наносить такой состав не стоит, только на чистый металл. При наличии старых покрытий используют эпоксидный грунт.

Во всех случаях применения кислотного грунта он должен перекрываться двухкомпонентным грунтом-наполнителем. Только после этого доступно нанесение дополнительной шпаклевки, вторичной грунтовки и покраски. На кислотное покрытие нельзя наносить ничего, кроме изолирующего грунта. Протравливающая грунтовка является одним из средств обработки машины для защиты кузова из металла от коррозии. Используют такой состав также для защиты от коррозии сварочных швов.

Кислотный протравливающий грунт обладает следующими отличительными качествами:

  • устойчив к воздействию солей и влаги;
  • отличается износостойкостью;
  • защищает от любого негативного внешнего воздействия.

На видео: чем отличается эпоксидный грунт от кислотного.

Блок: 2/5 | Кол-во символов: 1630
Источник: https://GidPoKraske.ru/gruntovanie/vidy-gruntovok/grunt-kislotnyj.html

Как выбрать грунтовочную пасту?

Кислотный грунт выступает в роли надежной защиты кузова авто от действия многочисленных внешних факторов, в том числе соли, влаги и коррозии. Незначительные царапины, механические повреждения и сколы могут привести к появлению ржавчины, поэтому при покупке грунтовочной пасты не стоит экономить. На рынке современных материалов для ремонта и покраски автомобиля представлены кислотные грунтовки от разных производителей — Novol, Body 960, Getapro, Химрезерв, Миксон и другие.

Для чего нужна кислотная грунтовка и что это такое? Другие названия такого средства автохимии, которые можно услышать – это фосфатирующая, протравливающая, реактивная грунтовка, вош-праймер. Основные его свойства – высокая адгезия и антикоррозионное действие. Поэтому назначение кислотного грунта заключается в протекции металла кузова авто от появления ржавчины. Почему грунт именуется кислотным? Объясняется это тем, что он отверждается с помощью кислоты.

Блок: 4/16 | Кол-во символов: 966
Источник: https://stranas.ru/acid-primer-instructions-for-use-acidic-primer-for-cars/

Self-etch primer

Если на упа­ков­ке напи­са­но Self-etching, то это напол­ня­ю­щий кис­лот­ный грунт с добав­кой цин­ка. Кис­ло­та разъ­еда­ет металл, и цинк сра­зу въеда­ет­ся в него. Кис­ло­та обыч­но орто­фос­фор­ная. Self-etching primer пред­на­зна­чен для улуч­ше­ния адге­зии и сгла­жи­ва­ния неров­но­стей метал­ли­че­ской поверх­но­сти. Этот грунт фос­фа­ти­ру­ет и грун­ту­ет поверх­ность одно­вре­мен­но. Сна­ча­ла про­ис­хо­дит хими­че­ская реак­ция кис­ло­ты с метал­лом, а потом поли­мер и анти­кор­ро­зи­он­ные пиг­мен­ты при высы­ха­нии фор­ми­ру­ют защит­ную плён­ку.

Блок: 4/11 | Кол-во символов: 582
Источник: https://kuzov.info/kislotniy-grunt-dlya-avto/

Однокомпонентный кислотный грунт

Одно­ком­по­нент­ный кис­лот­ный грунт не тре­бу­ет добав­ле­ния акти­ва­то­ра.  Такой грунт про­да­ёт­ся как для нане­се­ния крас­ко­пуль­том, так и в бал­лон­чи­ках.

Кис­лот­ный грунт не содер­жит напол­ни­те­лей и при высы­ха­нии даёт очень тон­кий слой.

Доста­точ­но одно­го тон­ко­го слоя. Нане­се­ние тол­сто­го слоя или несколь­ких тон­ких сло­ёв одно­ком­по­нент­но­го кис­лот­но­го грун­та не сде­ла­ет его более эффек­тив­ным.

Нуж­но пом­нить, что любой одно­ком­по­нент­ный про­дукт нахо­дит­ся в не ста­биль­ном (не затвер­дев­шем) состо­я­нии и может ока­зы­вать дей­ствие на сле­ду­ю­щий слой покры­тия. Сра­зу после высы­ха­ния кис­лот­ный грунт дол­жен быть покрыт двух­ком­по­нент­ным (с отвер­ди­те­лем) акри­ло­вым напол­ня­ю­щим грун­том.

Блок: 5/11 | Кол-во символов: 787
Источник: https://kuzov.info/kislotniy-grunt-dlya-avto/

Двухкомпонентный кислотный грунт

Двух­ком­по­нент­ный кис­лот­ный грунт необ­хо­ди­мо сме­шать с акти­ва­то­ром, что­бы исполь­зо­вать.

Кис­лот­ный грунт с акти­ва­то­ром нано­сит­ся 1–3 сло­я­ми (в зави­си­мо­сти от реко­мен­да­ций про­из­во­ди­те­ля), по 5 минут суш­ки меж­ду сло­я­ми при ком­нат­ной тем­пе­ра­ту­ре, либо, когда ста­но­вит­ся мато­вым. Он не явля­ет­ся само­сто­я­тель­ным пол­но­цен­ным грун­том. Вто­рич­ный (акри­ло­вый) грунт нано­сит­ся сле­ду­ю­щим сло­ем, через 15–20 минут.

Из опы­та мож­но ска­зать, что двух­ком­по­нент­ные кис­лот­ные грун­ты луч­ше пре­об­ра­зо­вы­ва­ют остат­ки ржав­чи­ны, остав­шей­ся после чист­ки и дают луч­шую защи­ту от кор­ро­зии.

Если 2К кис­лот­ный грунт сох­нет более 6 часов, то перед нане­се­ни­ем напол­ня­ю­ще­го грун­та или крас­ки его нуж­но шли­фо­вать под покрас­ку.

Блок: 6/11 | Кол-во символов: 832
Источник: https://kuzov.info/kislotniy-grunt-dlya-avto/

Что еще нужно знать?

Многие СТО практикуют нанесение кислотного грунта на поверхность кузова авто, предназначенных под покраску. Такая процедура обработки получила название «вош праймер». В результате кислотного грунтования состав сохраняет свои свойства в течение двух суток после смешивания двух компонентов. Нанесение двухкомпонентного автомобильного грунта проводится поэтапно. Металл просыхает в течение двух часов.

Реактивный грунт рекомендуется шлифовать зернистой шкуркой.

Учитывая уязвимость поверхности автомобиля, к выбору грунтовки для защиты от коррозии нужно подходить ответственно. Если этот материал некачественный, то краска начинает проседать, и поверхность автомобиля теряет свою привлекательность. Автомобильный грунт имеет хорошую адгезию с кузовом.

Грунтовки делятся на:

  • Однокомпонентные.

  • Двухкомпонентные.

Наиболее популярная из них (для защиты металла) имеет в своем составе два компонента. Кислотный грунт обязательно перекрывается двухкомпонентным грунтом-наполнителем. Такие составы отличаются высокой износостойкостью, отлично наносится на металлическую поверхность. Благодаря обработке автомобилей удается приостановить распространение ржавчины на их кузове. Особой отличительной чертой кислотной грунтовки является возможность нанесения шлифовки. В случае, когда на поверхности кузова автомобиля имеются дефекты, шлифовка не проводится.

Как грунтовать кислотным грунтом (2 видео)

Кислотные (травящие) грунты разных марок (20 фото)

Блок: 5/5 | Кол-во символов: 1538
Источник: https://GidPoKraske.ru/gruntovanie/vidy-gruntovok/grunt-kislotnyj.html

Методы нанесения кислотного грунта

Наносить такой состав можно следующими способами:

  • с помощью кисти;
  • методом распыления аэрозолем;
  • окунуть металл в раствор грунтовки;
  • электроосаждением;
  • распылением с помощью электричества.

Способ окунания в грунтовку применим только в заводских условиях. Работая с кислотными грунтовками, необходимо соблюдать меры предосторожности, чтобы не отравиться химическими компонентами. Такой грунт наносится до покраски кузова машины. Шлифовка может предполагаться в составе, но он может быть и нешлефующим.

Результат работы при нанесении грунтовки всецело зависит от мастерства исполнителя. Нанесенный защитный слой кислотной грунтовки на металлическую поверхность надежно защитит ее от ржавчины.

В составе кислотного материала содержится поливинил-бутилен, защищающий металл от коррозии. Состав может наноситься на такие металлические поверхности:

  • алюминиевые;
  • из хромированной стали;
  • оцинкованные стальные;
  • из нержавеющей стали;
  • стальные.

На кислотную основу нельзя наносить материалы, изготовленные на полиэфирной основе. Кислота токсична, поэтому, распыляя спрей, требуется использовать средства защиты. Уже спустя час после нанесения кислотной грунтовки можно приступать к финальной обработке.

Блок: 4/5 | Кол-во символов: 1228
Источник: http://beton-stroyka.ru/gruntovanie/v-chem-osobennost-sostava-kislotnogo-grunta.html

Из чего состоит кислотный грунт?

Кис­лот­ный грунт – это про­зрач­ный состав, с оттен­ком серо­го или свет­ло зелё­но­го цве­тов.

Как было уже ска­за­но, состав кис­лот­ных грун­тов может отли­чать­ся друг от дру­га, в зави­си­мо­сти от про­из­во­ди­те­ля и иметь раз­ные про­пор­ции.

Базо­вым поли­ме­ром обыч­но слу­жит поли­ви­нил­бу­ти­раль, так­же в соста­ве при­сут­ству­ет фос­фор­ная (орто­фос­фор­ная) кис­ло­та (неболь­шое коли­че­ство), изо­про­пи­ло­вый спирт, хро­мат цин­ка (или фос­фат цин­ка), тальк (око­ло 2%) и дру­гие добав­ки.

Хро­мат цин­ка – это ком­по­нент, повы­ша­ю­щий кор­ро­зи­он­ную защи­ту метал­ла. В тра­вя­щем грун­те орто­фос­фор­ная кис­ло­та всту­па­ет в реак­цию с метал­лом, тогда как хро­мат цин­ка хими­че­ски не вза­и­мо­дей­ству­ет с метал­лом. По сути, хро­мат цин­ка может добав­лять­ся в грун­ты с раз­лич­ны­ми поли­ме­ра­ми, такие как эпок­сид­ный, поли­уре­та­но­вый. Он добав­ля­ет анти­кор­ро­зи­он­ные свой­ства про­дук­ту, в кото­рый добав­лен.

В неко­то­рых стра­нах хими­че­ский реак­тив хро­мат цин­ка запре­щён из-за высо­кой ток­сич­но­сти, поэто­му в грун­те содер­жат­ся дру­гие ком­по­нен­ты подоб­но­го дей­ствия.

Блок: 7/11 | Кол-во символов: 1170
Источник: https://kuzov.info/kislotniy-grunt-dlya-avto/

Описание материала

Кислотный грунт представляет собой праймер очень высокого качества с основой из поливинил-бутилена для защиты кузова авто от коррозии. Базовый первичный грунт необходимо смешивать со специальным активатором. Период высыхания – 10 мин. Покрытие надежно защищает металл от соли и воды. Сверху можно накладывать любые двухкомпонентные материалы.

Реактивный грунт может наноситься на любые металлические поверхности:

  • Алюминиевые;
  • Хромированные стальные;
  • Оцинкованные стальные;
  • Нержавеющие стальные;
  • Чистая сталь.

Противопоказано нанесение на кислотную основу материалов, имеющих полиэфирную основу. Наносится кислотный состав на металл либо кистью, либо специальным оборудованием. Материал токсичен и горюч, поэтому требует соблюдения мер предосторожности.

Спустя час после грунтования кузова авто можно выполнить финальную обработку для улучшения адгезии поверхности. Температура сушки не должна опускаться ниже +15°С.

Блок: 9/16 | Кол-во символов: 935
Источник: https://stranas.ru/acid-primer-instructions-for-use-acidic-primer-for-cars/

Можно ли наносить краску на кислотный грунт?

Основ­ным пра­ви­лом явля­ет­ся то, что кис­лот­ный грунт нуж­но покры­вать свер­ху вто­рич­ным акри­ло­вым грун­том. Неко­то­рые кис­лот­ные двух­ком­по­нент­ные грун­ты (self etch primer), сов­ме­ща­ю­щие в себе функ­ции и кис­лот­но­го и напол­ня­ю­ще­го соста­ва, могут быть покры­ты сра­зу крас­кой.

Если на одно­ком­по­нент­ный кис­лот­ный грунт нано­сить слой крас­ки, то одной из про­блем может стать дей­ствие жёл­то­го пиг­мен­та грун­та на крас­ку. Он может повли­ять на цвет крас­ки. Все­гда нуж­но све­рять­ся с инструк­ци­ей про­из­во­ди­те­ля.

Блок: 10/11 | Кол-во символов: 601
Источник: https://kuzov.info/kislotniy-grunt-dlya-avto/

Кислотный грунт, применение

  • Ори­ги­наль­ные пане­ли на заво­де оцин­ко­вы­ва­ют­ся и нано­сят покры­тие элек­тро­оса­жде­ни­ем, что­бы обес­пе­чить защи­ту от кор­ро­зии. При ремон­те поверх­но­сти, про­шли­фо­ван­ные до метал­ла теря­ют защит­ные свой­ства. Таким обра­зом, что­бы гаран­ти­ро­вать отлич­ные анти­кор­ро­зи­он­ные свой­ства, необ­хо­ди­мо нано­сить тра­вя­щий грунт.
  • При нали­чии неболь­шо­го коли­че­ства не счи­ща­е­мой ржав­чи­ны так­же мож­но при­ме­нять кис­лот­ный грунт.
  • При нали­чии кон­струк­ции или дета­ли с чистым метал­лом и труд­но­до­ступ­ны­ми для абра­зив­ной обра­бот­ки места­ми мож­но, для под­го­тов­ки к нане­се­нию после­ду­ю­ще­го слоя акри­ло­во­го грун­та при­ме­нить кис­лот­ный грунт.
  • Перед грун­то­ва­ни­ем вто­рич­ным грун­том и покрас­кой цвет­ных метал­лов реко­мен­ду­ет­ся повы­шать адге­зию реак­тив­ным грун­том (wash primer).

“Кон­ку­рен­том” кис­лот­но­го грун­та явля­ет­ся эпок­сид­ный грунт. О раз­ли­чи­ях этих грун­тов и тон­ко­стях при­ме­не­ния може­те про­чи­тать ста­тью.

Блок: 8/11 | Кол-во символов: 1030
Источник: https://kuzov.info/kislotniy-grunt-dlya-avto/

Ограничения

На кис­лот­ный грунт нель­зя нано­сить шпа­клёв­ку и эпок­сид­ный грунт (см. ста­тью “мож­но ли нано­сить эпок­сид­ный грунт на кис­лот­ный”).

Печа­тать ста­тью

Блок: 11/11 | Кол-во символов: 172
Источник: https://kuzov.info/kislotniy-grunt-dlya-avto/

Описание и типы вош-праймеров

Основным компонентом реактивной грунтовки выступает фосфорная кислота, которая образует на поверхности труднорастворимую прочно соединенную с металлом авто пленку.

Характеристики кислотного грунта:

  • стойкость перед воздействием влаги и соли;
  • износоустойчивость;
  • кислотный агрессивный состав способен проникать в металл и увеличивать таким образом адгезию;
  • высокая сопротивляемость по отношению к химическим веществам.

Кислотный грунт для ремонта авто разделяют на два типа:

  • Первичный однокомпонентный – он не требует добавления активатора, или катализатора (не путать с разбавителем!). Пример такой грунтовки – Mobihel Праймер 1K.
  • Первичный двухкомпонентный – здесь нужно добавлять отвердитель, в качестве которого у кислотного грунта для авто выступает фосфорная кислота. При смешивании она, вступая во взаимодействие с пигментами, искусственными смолами и другими составляющими, выделяет тепло. Примеры двухкомпонентных реактивных грунтовок – Novol Protect 340 Wash Primer, Body 960.

Блок: 18/21 | Кол-во символов: 1005
Источник: https://blogokraske.ru/gruntovki/vidyi-gruntovok/kislotnyj-grunt-dlya-avto-vidy-svojstva-i-metody-naneseniya.html

Варианты кислотных грунтовочных смесей

В процессе работе над кузовом авто применяются разные материалы. Нужно понимать, что необходимый результат можно получить исключительно с помощью средств, которые оправдали себя В практических условиях. Сюда можно отнести:

  • Фосфатирующий реактивный грунт DUR 1:1;
  • Body 960 Wash Primer;
  • Radex CR 1+1 с активатором;
  • Reoflex Washprimer 2K 1+1;
  • Mobihel Primer.

Фосфатирующий реактивный грунт DUR 1:1

Это средство российского производства:

  • быстро сохнет;
  • надежно крепится на кузове;
  • оберегает металл от ржавчины.

В материале нет хроматов (солей хромовой кислоты). Затвердевание происходит с использованием реактивного катализатора, который входит в набор.

Body 960 Wash Primer

Этот двух-компонентный грунт наносят на детали из нержавеющего или оцинкованного материала, металлические и гальванизированные. Перед использованием средство перемешивают с отвердителем, после этого накрывают поверхность слоем примерно в 10 микрон.

Плюсы средства:

  • стремительная сушка;
  • нет необходимости в шлифовке;
  • возможность наносить на него любые с двумя компонентами материалы (не считая тех, в их состав входит полиэфира).

Radex CR 1+1 с активатором

Этот кислотный протравливающий грунт из 2-ух элементов очень эффективно предохраняет корпус автомобиля от коррозийного разрушения. Кроме самого средства, в наборе есть отвердитель Radex CR Activator. Объем — 1 л, как и самой грунтовочной смеси. Перед использованием их перемешивают в соотношении 1:1.

Средство прекрасно проявило себя во время обработки частей сделанных из металла авто, также оцинкованных и новых поверхностей. Грунт прочно крепится на каркасе и мешает проникновению ржавчины.

Reoflex Washprimer 2K 1+1

Применяется при восстановлении лакокрасочного покрытия кузова или тогда, когда оно отсутствует. Толщина слоя составляет ориентировочно 10 микрон. Время схватывания — 15 минут при температуре 20 °C. В наборе с данной фосфатирующей грунтовочной смесью идет кислотный отвердитель.

Mobihel Праймер

Этот первичный однокомпонентный грунт надежно защищает кузов от ржавчины. Наносят на традиционный или оцинкованный металл, изделия из алюминия путем распыления. Перед этим перемешивают с разбавителем по соотношению 5:1 (5 частей грунта и 1 разбавителя). Сохнет на протяжении часа при 20 °C, после наносятся такие материалы.

Главное! Грунт Mobihel Праймер не совместим с полиэфирной шпаклевкой.

Блок: 6/7 | Кол-во символов: 2378
Источник: http://versace-promo.ru/kraski-klei-gruntovki/raznovidnosti-i-osobennosti-primenenija-kislotnogo/

Что представляет собой кислотный грунт?

Различные кислотные и щелочные соединения важны в процессе изготовления автомобильных красок, грунтов и прочих материалов для авто. Но стоит помнить о том, что химически активный фосфатирующий грунт зачастую не применяется в производстве машин. Изготовители автомобилей применяют иные способы коррозийной защиты.

Со временем эти способы утрачивают актуальность, металл оголяется и получает риск возникновения ржавчины. Вы можете самостоятельно устранить риски, используя специальную грунтовку с фосфатирующими свойствами. Главные особенности этого материала следующие:

  • состав создан специально для авто, но можно также использовать его для других металлических изделий;
  • в основе состава – ортофосфорная кислота, а также цинк и марганец для создания защитной пленки;
  • токсичность достаточно высока, поэтому при использовании следует применять средства защиты;
  • применение данной грунтовки не снимает необходимость нанесения стандартного грунта для авто;
  • после использования состава и перед покраской должно пройти минимум несколько часов для оптимального результата.

Помните, что кислотный грунт не заменяет обычный состав, который наносится перед покраской. Процедура достаточно проста – сначала вы наносите грунт праймер с фосфатирующими свойствами, затем используете стандартную основу под краску, далее выравниватели и все прочие составы, и только после этого вы можете красить автомобиль. Только так можно достичь нормального результата защиты. Наносить сразу после кислоты эмаль или металлик не стоит, так как это приведет к деградации краски.

Блок: 14/21 | Кол-во символов: 1578
Источник: https://blogokraske.ru/gruntovki/vidyi-gruntovok/kislotnyj-grunt-dlya-avto-vidy-svojstva-i-metody-naneseniya.html

Кол-во блоков: 29 | Общее кол-во символов: 24887
Количество использованных доноров: 6
Информация по каждому донору:
  1. https://stranas.ru/acid-primer-instructions-for-use-acidic-primer-for-cars/: использовано 4 блоков из 16, кол-во символов 4682 (19%)
  2. https://GidPoKraske.ru/gruntovanie/vidy-gruntovok/grunt-kislotnyj.html: использовано 2 блоков из 5, кол-во символов 3168 (13%)
  3. https://blogokraske.ru/gruntovki/vidyi-gruntovok/kislotnyj-grunt-dlya-avto-vidy-svojstva-i-metody-naneseniya.html: использовано 5 блоков из 21, кол-во символов 5048 (20%)
  4. https://kuzov.info/kislotniy-grunt-dlya-avto/: использовано 9 блоков из 11, кол-во символов 8383 (34%)
  5. http://versace-promo.ru/kraski-klei-gruntovki/raznovidnosti-i-osobennosti-primenenija-kislotnogo/: использовано 1 блоков из 7, кол-во символов 2378 (10%)
  6. http://beton-stroyka.ru/gruntovanie/v-chem-osobennost-sostava-kislotnogo-grunta.html: использовано 1 блоков из 5, кол-во символов 1228 (5%)

Кислотный грунт для автомобиля, когда применять и как наносить

Что такое кислотный грунт, и для каких целей он необходим? Его еще довольно часто могут называть фосфатирующим либо вош-праймером, а также реактивным. Обладает он высокими антикоррозионными и адгезивными свойствами.

Основными свойствами реактивных грунтовок, в том числе марок body, novol, являются износостойкость, устойчивость к агрессивной солевой среде и влаге. Они хорошо сохраняются при различном механическом, химическом или атмосферном влияниях. Различают:

Кислотный грунт прекрасно наносится на такие материалы металлической поверхности авто как: алюминиевые, оцинкованные, хромированные и нержавеющие стальные покрытия, сварочные швы, железо, и многие другие.

Для качественного нанесения грунтовки, необходимо хорошо подготовить кузов авто для обработки. Удалить остатки краски, выровнять поверхность, очистить от грязи и пыли, обезжирить.

Подготовить необходимо инструменты или оборудование, которыми будет наноситься грунтовка. Существует несколько способов обработки авто грунтом:

электрораспыление.

Перед началом работы необходимо позаботиться о средствах защиты (резиновые перчатки, респиратор ЗМ, сменная плотная одежда, обувь), так как кислоты входящие в состав таких грунтовок оказывают отравляющее действие на организм человека, а также могут легко воспламениться.

Обрабатывается поверхность авто кислотным двухкомпонентным антикоррозионным грунтом в несколько этапов. Наносится от одного до трех слоев, с интервалом не менее пяти минут. Далее осуществляется сушка – металл сохнет от 30 мин. до 1,5 часа при температуре воздуха не ниже 15 градусов тепла.

Поверх протравливающей грунтовки возможна обработка наполнителем, однако категорически запрещено наносить шпатлевку, в состав которой входят полиэфиры. Такая шпатлевка может способствовать растворению защитного покрытия металла, что приведет к бесполезности проведенной работы. Но, что важно, нанесение кислотной грунтовки на шпатлевку возможно.

Одной из основных особенностей кислотного грунта (например, марок body, novol) является возможность шлифовки. Для этого используют наждачную бумагу с зернистостью не менее Р400.

Если автомобильная поверхность имеет ряд незначительных изъянов, шлифовка не проводится. Затем поверх реактивной грунтовки наносятся вторичные грунты, в основном, акриловые, и автомобиль готов к последующему окрашиванию.

Как выбрать необходимую грунтовку

Сегодня различают множество брэндов кислотной грунтовки: getapro, body 960, novol, химрезерв, миксон и другие, поэтому выбрать необходимый становится затруднительным. В первую очередь нужно понимать, что экономить на грунтовках нельзя. Если взять некачественный, но дешевый грунт для вашего авто, в результате можно получить испорченный внешний вид поверхности автомобиля: неравномерное окрашивание, недостаточная обработка коррозии и т.д.

Перед приобретением необходимо внимательно изучить инструкцию к применению той или иной марки грунтовки, там должно быть достаточно информации: время и температура высыхания, пропорции для смешивания, совместимость с различными покрытиями и другое.

И, что немаловажно, перед приобретением грунтовки обращайте внимание на указанную на емкости для грунта дату выпуска, срок годности и условия хранения. Ведь даже самая качественная лакокрасочная продукция при истекшем сроке или неправильном хранении может оказать противоположный от ожидаемого эффект и нанести больше вреда, чем пользы.

Выбирать лучше грунтовки известных и проверенных производителей, которые были не один раз испытаны потребителями, такие как body 960, novol.

Для чего нужен кислотный грунт для авто? Применение

Качество покраски автомобильного кузова, во многом, определяется тем, насколько грамотно и профессионально выполнена подготовительная стадия.

Металл в обязательном порядке проходит защитную обработку, благодаря которой достигается стойкость к ржавчине даже в том случае, если на слое свежей краски образуется глубокая царапина.

Кислотная грунтовка по металлу – один из лучших способов обеспечения такой защиты. Помимо этого, она улучшает сцепление красящего состава с основанием, благодаря чему он дольше сохраняет изначальную прочность и привлекательность внешнего вида.

Совместимые материалы

Использование травящего состава допустимо в том случае, если кузов выполнен на основе следующих металлов:

  • алюминий;
  • сталь;
  • сталь с покрытием на основе хрома;
  • классическая нержавеющая сталь;
  • сталь с покрытием на цинковой основе.

Применение на полиэфирных материалах запрещено. Эпоксидные смолы и составы на их основе, шпатлевки – все это также несовместимо с грунтом, так как его свойства при контакте полностью нейтрализуются.

Познавательное видео, различия кислотного и эпоксидного грунта:

Состав продукта

Конечно, окончательный состав зависит от производственной технологии конкретного изготовителя, процентные доли компонентов могут меняться, равно как и их набор.

Впрочем, существует классический состав, отклонения от которого фиксируются нечасто. В качестве основного полимерного вещества применяется поливинилбутираль, кислота имеет фосфорную или ортофосфорную природу.

Дополнительно используются цинковые хроматы или фосфаты, изопропиловые спирты, тальк и иные химические добавки, улучшающие конечные характеристики готового продукта.

Основной элемент, способствующий повышению защиты основы от ржавчины – это именно хромат (фосфат) цинка. Это вещество эффективно, но токсично, так что при работе рекомендуется использовать средства индивидуальной защиты, вести ее на открытом воздухе.

По причине токсичности некоторые производители полностью отказались от хромата цинка, заменив его не менее эффективными, но более экологически чистыми аналогами. Такая замена нередко приводит к существенному увеличению стоимости.

Преимущества решения

Для чего нужен слой грунта? У его использования есть преимущества и помимо обеспечения коррозионной стойкости:

  1. Повышение невосприимчивости металла к температурному воздействию.
  2. Устойчивость к химическим реагентам. Как известно, в зимнее время дороги активно посыпаются солью и другими веществами, снижающими вероятность образования гололеда. Контакт с ними для металла гораздо опаснее, нежели просто воздействие воды. Грунт защищает от них. Аналогично можно сказать о негативном действии масел, бензина и других агрессивных технических жидкостей, имеющих свойства растворителей.
  3. Атмосферная стойкость. Помимо интенсивных осадков, здесь можно говорить и о температурных перепадах, характерных для межсезонья. Для металла они представляют большую опасность.

Основные разновидности

Травящий грунт для авто представлен следующими категориями:

Реактивная грунтовка.

Она наносится на предварительно очищенное основание тончайшим слоем, толщина которого варьируется от 8 до 13 микрон. Сверху наносится краска или другой декоративный состав, главным компонентом которого является акрил. Это самый простой вид подготовительного раствора.

Наполняющая грунтовка. Ее состав дополнен цинком, благодаря которому удается не просто защитить металл от ржавчины, но и заполнить небольшие неровности, сгладить поверхность, добиться ее большей привлекательности, а также повысить сцепление с краской.

Кислый грунт сначала бурно реагирует с металлом, после чего реакция постепенно прекращается, а на поверхности образуется слой защиты, состоящий из полимерных компонентов и особых химических веществ, препятствующих контакту с влагой.

Однокомпонентные грунтовки. Большое преимущество – отсутствие необходимости в активирующем веществе, что упрощает процесс нанесения. Такой продукт зачастую продается в баллончике, причем для полноценной обработки достаточно всего одного прохода пульверизатором. Когда состав высох, сверху он обрабатывается грунтом на основе акрила.

Двухкомпонентная грунтовка. Непосредственно перед обработкой основа смешивается с активирующим веществом.

Точная схема нанесения зависит от рекомендаций конкретного производителя. В некоторых случаях достаточно и одного слоя, но иногда их количество доходит до трех. Между нанесениями каждого из слоев следует делать 5-минутные перерывы, этого времени вполне достаточно, чтобы состав высох и приобрел максимальную прочность.

Смотрите полезное видео, тест кислотных грунтов:

Подготовка к нанесению

Перед тем, как нанести на кузов кислотник, металл необходимо соответствующим образом подготовить:

  1. Поверхность очищается до голого металла, то есть с нее нужно удалить все загрязнения, пыль, следы старых отделочных и декоративных покрытий, в том числе шпаклевки, краски.
  2. Защита деталей, которые не должны быть затронуты в процессе обработки. Наиболее простой вариант – закрытие их малярным скотчем.
  3. Обезжиривание. В некоторых случаях может потребоваться шлифовка, для чего используется наждачная бумага определенной зернистости.

Нельзя забывать и о собственной защите. Респиратор, резиновые перчатки, плотная одежда – все это позволяет избавить себя от массы неприятных последствий.

Видео для просмотра, подготовка кузова под кислотный грунт:

Методики нанесения

Технология зависит от типа выбранного состава. Наиболее простой вариант – это использование аэрозольного баллончика. Он сразу содержит в себе полностью подготовленный к применению раствор, не нужно ничего смешивать, использовать дополнительные компоненты.

Работа ведется очень быстро, за один проход удается обработать крупную площадь. Единственный недостаток баллончиков – это дороговизна, в сравнении с продукцией, поставляющейся в простых тарах.

Допускается также использование кисти. Минус способа – низкая скорость, зато он помогает сэкономить. Двухкомпонентные грунтовки, как правило, наносятся только таким способом.

Альтернатива – использование краскопульта, но для разовых работ его приобретение нерентабельно. Конечно, в случае автомобильного сервисного центра такой вариант выглядит оптимально, так как позволяет работать быстро, используя недорогие составы.

Если требования производителя предполагают нанесение состава в несколько слоев, то нужно знать, сколько сохнет кислотный грунт. Среднее время высыхания слоя – около четверти часа (если температура воздуха составляет 20 градусов).

Смотрите видео по теме, как грунтовать кислотным грунтом:

Подведение итогов

Итак, мы разобрались в том, что это такое – кислотный грунт. Среди всех современных методов защиты автомобиля от внешних нагрузок он является наиболее эффективным и экономичным.

При помощи его нанесения удастся обеспечить долговечность изначального внешнего вида транспортного средства даже в агрессивных эксплуатационных условиях. Краска прочнее прилегает к поверхности, дольше сохраняет цвет и насыщенность, металл не ржавеет даже при непосредственно контакте с влагой и агрессивными химическими реагентами.

В пользу выбора такого способа обработки говорит и то, что выполнить его можно собственными силами, используя состав в аэрозольном баллончике.

Кислотный грунт для автомобиля, когда применять и как наносить

Когда речь идёт о кис­лот­ном грун­те, зву­чат такие назва­ния, как фос­фа­ти­ру­ю­щий, тра­вя­щий, реак­тив­ный грунт. В этой ста­тье рас­смот­рим, есть ли какое-либо отли­чие этих про­дук­тов или это раз­ные назва­ния одно­го и того же вида грун­та. Раз­бе­рём­ся, когда при­ме­ня­ет­ся и как «рабо­та­ет» кис­лот­ный грунт и в чём отли­чие одно­ком­по­нент­ных и двух­ком­по­нент­ных кис­лот­ных соста­вов.

Кис­лот­ный грунт явля­ет­ся пер­вич­ным грун­том, как и эпок­сид­ный и нано­сит­ся на чистый металл (см. ста­тью “кис­ло­и­ный или эпок­сид­ный грунт, какой выбрать”). Кис­лот­ный грунт, про­трав­ли­вая металл, очи­ща­ет его и немно­го изме­ня­ет поверх­ность для улуч­ше­ния даль­ней­шей адге­зии напол­ня­ю­ще­го грун­та, а так­же обес­пе­чи­ва­ет пре­об­ра­зо­ва­ние мел­кой ржав­чи­ны. Тра­вя­щий грунт не уби­ра­ет, но оста­нав­ли­ва­ет кор­ро­зию от рас­про­стра­не­ния. Важ­но мак­си­маль­но тща­тель­но уда­лить всю ржав­чи­ну. На остат­ки, кото­рые невоз­мож­но убрать, и воз­дей­ству­ет кис­лот­ный грунт.

Содер­жа­ние:

Кислотный, фосфатирующий, травящий или реактивный грунт?

Все эти назва­ния, так или ина­че, обо­зна­ча­ют грунт, в соста­ве кото­ро­го есть кис­ло­та. На англий­ском язы­ке суще­ству­ет три раз­ных назва­ния кис­лот­ных грун­тов, кото­рые ука­зы­ва­ют­ся так­же и на упа­ков­ках, про­да­ю­щих­ся в Рос­сии. Etch или etching primer – тра­вя­щий грунт, self etch/etching primer – тра­вя­щий грунт, име­ю­щий ингре­ди­ен­ты, кото­рые сра­зу после дей­ствия кис­ло­ты въеда­ют­ся в металл, созда­вая анти­кор­ро­зи­он­ную защи­ту, wash primer – реак­тив­ный грунт, кото­рый так­же содер­жит кис­ло­ту и, по тео­рии, пред­на­зна­чен для нане­се­ния на новый металл, не содер­жа­щий ста­рой шпа­клёв­ки и крас­ки, для повы­ше­ния адге­зии (в осо­бен­но­сти цвет­ных метал­лов, к при­ме­ру аллю­ми­ния).

Неко­то­рые кис­лот­ные грун­ты недо­ста­точ­но «силь­ные», что­бы дей­ство­вать на сталь. Нуж­но смот­реть тех­ни­че­ские харак­те­ри­сти­ки про­дук­та.

У раз­ных про­из­во­ди­те­лей раз­ные фор­му­лы грун­тов и инструк­ции по при­ме­не­нию. Пер­во­на­чаль­но, тра­вя­щие грун­ты не содер­жа­ли ком­по­нен­тов, повы­ша­ю­щих коро­зи­он­ную защи­ту и, тем более, напол­ни­те­лей, запол­ня­ю­щих мел­кие неров­но­сти. Сей­час мож­но встре­тить кис­лот­ные грун­ты раз­ных про­из­во­ди­те­лей, кото­рые содер­жат и анти­кор­ро­зи­он­ные добав­ки и могут быть одно­вре­мен­но напол­ня­ю­щи­ми. Чаще все­го, всё же, хоро­ший кис­лот­ный грунт спо­со­бен хими­че­ски дей­ство­вать на любой металл, под­го­тав­ли­вая его для сле­ду­ю­ще­го слоя напол­ня­ю­ще­го грун­та, а так­же пре­об­ра­зу­ет неболь­шое коли­че­ство труд­но счи­ща­е­мой ржав­чи­ны и пас­си­ви­ру­ет поверх­ность метал­ла, делая его не актив­ным к окис­ле­нию, а сле­до­ва­тель­но к кор­ро­зии.

Реактивный грунт (Wash primer)

Реак­тив­ный грунт (Wash primer) и кис­лот­ные грун­ты похо­жи по сво­е­му дей­ствию. Wash primer нано­сит­ся толь­ко на чистый металл. Он не запол­ня­ет рис­ки и мел­кие неров­но­сти и тре­бу­ет обя­за­тель­но­го нане­се­ния поверх него акри­ло­во­го грун­та. Wash primer – это орто­фос­фор­ная кис­ло­ты в рас­тво­ре поли­ви­нил­бу­ти­раль­но­го поли­ме­ра, изо­про­пи­ло­во­го спир­та и дру­гих ингре­ди­ен­тов. Такой грунт нано­сит­ся тон­ким сло­ем, созда­вая сухую плён­ку, тол­щи­ной 8–13 мик­рон. Этот грунт дела­ет про­цесс покрас­ки более эффек­тив­ным и добав­ля­ет метал­лу анти­кор­ро­зи­он­ные свой­ства. В даль­ней­шем, при экс­плу­а­та­ции, даже при незна­чи­тель­ном повре­жде­нии лако­кра­соч­но­го слоя, металл, обра­бо­тан­ный реак­тив­ным грун­том не будет ржа­веть.

Этот грунт пас­си­ви­ру­ет металл перед нане­се­ни­ем напол­ня­ю­ще­го грун­та. Поверх­ность метал­ла ста­но­вит­ся неак­тив­ной к кис­ло­ро­ду, содер­жа­ще­му­ся в воз­ду­хе и воде. Созда­ёт­ся очень тон­кая плён­ка, он пере­хо­дит в пас­сив­ное состо­я­ние, и тор­мо­зят­ся про­цес­сы кор­ро­зии. Так­же, созда­ёт­ся хоро­шее осно­ва­ние для нане­се­ния сле­ду­ю­ще­го слоя напол­ня­ю­ще­го грун­та.

Wash primer обыч­но реко­мен­ду­ют нано­сить на алю­ми­ний и дру­гие метал­лы для улуч­ше­ния адге­зии с после­ду­ю­щим покры­ти­ем. На алю­ми­нии и оцин­ко­ван­ном метал­ле, без под­го­тов­ки этим прай­ме­ром, покры­тие пло­хо дер­жит­ся.

Однокомпонентный кислотный грунт

Одно­ком­по­нент­ный кис­лот­ный грунт не тре­бу­ет добав­ле­ния акти­ва­то­ра. Такой грунт про­да­ёт­ся как для нане­се­ния крас­ко­пуль­том, так и в бал­лон­чи­ках.

Кис­лот­ный грунт не содер­жит напол­ни­те­лей и при высы­ха­нии даёт очень тон­кий слой.

Доста­точ­но одно­го тон­ко­го слоя. Нане­се­ние тол­сто­го слоя или несколь­ких тон­ких сло­ёв одно­ком­по­нент­но­го кис­лот­но­го грун­та не сде­ла­ет его более эффек­тив­ным.

Нуж­но пом­нить, что любой одно­ком­по­нент­ный про­дукт нахо­дит­ся в не ста­биль­ном (не затвер­дев­шем) состо­я­нии и может ока­зы­вать дей­ствие на сле­ду­ю­щий слой покры­тия. Сра­зу после высы­ха­ния кис­лот­ный грунт дол­жен быть покрыт двух­ком­по­нент­ным (с отвер­ди­те­лем) акри­ло­вым напол­ня­ю­щим грун­том.

Двухкомпонентный кислотный грунт

Двух­ком­по­нент­ный кис­лот­ный грунт необ­хо­ди­мо сме­шать с акти­ва­то­ром, что­бы исполь­зо­вать.

Кис­лот­ный грунт с акти­ва­то­ром нано­сит­ся 1 сло­ем. Он не явля­ет­ся само­сто­я­тель­ным пол­но­цен­ным грун­том. Вто­рич­ный (акри­ло­вый) грунт нано­сит­ся сле­ду­ю­щим сло­ем, через 15–20 минут.

Из опы­та мож­но ска­зать, что двух­ком­по­нент­ные кис­лот­ные грун­ты луч­ше пре­об­ра­зо­вы­ва­ют остат­ки ржав­чи­ны, остав­шей­ся после чист­ки и дают луч­шую защи­ту от кор­ро­зии.

Из чего состоит кислотный грунт?

Кис­лот­ный грунт – это про­зрач­ный состав, с оттен­ком серо­го или свет­ло зелё­но­го цве­тов.

Как было уже ска­за­но, состав кис­лот­ных грун­тов может отли­чать­ся друг от дру­га, в зави­си­мо­сти от про­из­во­ди­те­ля и иметь раз­ные про­пор­ции.

Базо­вым поли­ме­ром обыч­но слу­жит поли­ви­нил­бу­ти­раль, так­же в соста­ве при­сут­ству­ет фос­фор­ная (орто­фос­фор­ная) кис­ло­та (неболь­шое коли­че­ство), изо­про­пи­ло­вый спирт, хро­мат цин­ка (или фос­фат цин­ка), тальк (око­ло 2%) и дру­гие добав­ки.

Хро­мат цин­ка – это ком­по­нент, повы­ша­ю­щий кор­ро­зи­он­ную защи­ту метал­ла. В тра­вя­щем грун­те орто­фос­фор­ная кис­ло­та всту­па­ет в реак­цию с метал­лом, тогда как хро­мат цин­ка хими­че­ски не вза­и­мо­дей­ству­ет с метал­лом. По сути, хро­мат цин­ка может добав­лять­ся в грун­ты с раз­лич­ны­ми поли­ме­ра­ми, такие как эпок­сид­ный, поли­уре­та­но­вый. Он добав­ля­ет анти­кор­ро­зи­он­ные свой­ства про­дук­ту, в кото­рый добав­лен.

В неко­то­рых стра­нах хими­че­ский реак­тив хро­мат цин­ка запре­щён из-за высо­кой ток­сич­но­сти, поэто­му в грун­те содер­жат­ся дру­гие ком­по­нен­ты подоб­но­го дей­ствия.

Кислотный грунт, применение

  • Ори­ги­наль­ные пане­ли на заво­де оцин­ко­вы­ва­ют­ся и нано­сят покры­тие элек­тро­оса­жде­ни­ем, что­бы обес­пе­чить защи­ту от кор­ро­зии. При ремон­те поверх­но­сти, про­шли­фо­ван­ные до метал­ла теря­ют защит­ные свой­ства. Таким обра­зом, что­бы гаран­ти­ро­вать отлич­ные анти­кор­ро­зи­он­ные свой­ства, необ­хо­ди­мо нано­сить тра­вя­щий грунт.
  • При нали­чии неболь­шо­го коли­че­ства не счи­ща­е­мой ржав­чи­ны так­же мож­но при­ме­нять кис­лот­ный грунт.
  • При нали­чии кон­струк­ции или дета­ли с чистым метал­лом и труд­но­до­ступ­ны­ми для абра­зив­ной обра­бот­ки места­ми мож­но, для под­го­тов­ки к нане­се­нию после­ду­ю­ще­го слоя акри­ло­во­го грун­та при­ме­нить кис­лот­ный грунт.
  • Перед грун­то­ва­ни­ем вто­рич­ным грун­том и покрас­кой цвет­ных метал­лов реко­мен­ду­ет­ся повы­шать адге­зию реак­тив­ным грун­том (wash primer).

“ Кон­ку­рен­том” кис­лот­но­го грун­та явля­ет­ся эпок­сид­ный грунт. О раз­ли­чи­ях этих грун­тов и тон­ко­стях при­ме­не­ния може­те про­чи­тать ста­тью.

Нанесение кислотного грунта

  • Важ­но тща­тель­но взбол­тать и пере­ме­шать грунт перед при­ме­не­ни­ем.
  • Рас­пы­лять грунт нуж­но при тем­пе­ра­ту­ре от +10 до +32 гра­ду­сов по Цель­сию.
  • Перед нане­се­ни­ем фос­фа­ти­ру­ю­ще­го грун­та нуж­но осо­бен­но тща­тель­но обез­жи­рить поверх­ность. Луч­ше это делать в рези­но­вых пер­чат­ках, что­бы слу­чай­но не оста­вить отпе­чат­ков.
  • Для созда­ния хоро­шей адге­зии с метал­лом нуж­но нано­сить мок­рый слой кис­лот­но­го грун­та.
  • Луч­ше, что­бы тол­щи­на плён­ки не пре­вы­ша­ла 8 мик­рон, ина­че адге­зия ухуд­ша­ет­ся. Обыч­но доста­точ­но одно­го мок­ро­го слоя.
  • По тех­но­ло­гии, кис­лот­ный грунт эффек­ти­вен на «голом» метал­ле. Попа­да­ние неболь­шо­го коли­че­ства это­го грун­та на ста­рую крас­ку или шпа­клёв­ку не создаст про­бле­мы.
  • После нане­се­ния кис­лот­но­го грун­та нуж­но подо­ждать при­мер­но 10–20 минут пока грунт высох­нет, и нано­сить вто­рич­ный грунт.
  • Перед нане­се­ни­ем акри­ло­во­го напол­ня­ю­ще­го грун­та не тре­бу­ет­ся шли­фо­ва­ния.

Можно ли наносить краску на кислотный грунт?

Основ­ным пра­ви­лом явля­ет­ся то, что кис­лот­ный грунт нуж­но покры­вать свер­ху вто­рич­ным акри­ло­вым грун­том, кото­рый после высы­ха­ния нуж­но под­го­то­вить к покрас­ке шли­фо­ва­ни­ем.

Если на одно­ком­по­нент­ный кис­лот­ный грунт нано­сить слой крас­ки, то одной из про­блем может стать дей­ствие жёл­то­го пиг­мен­та грун­та на крас­ку. Он может повли­ять на цвет крас­ки.

Ограничения

На кис­лот­ный грунт нель­зя нано­сить шпа­клёв­ку и эпок­сид­ный грунт (см. ста­тью “мож­но ли нано­сить эпок­сид­ный грунт на кис­лот­ный”).

Кислотный грунт

Во многом качество покраски авто зависит от начального этапа подготовки металла. Изначально должно быть антикоррозийное покрытие, которое будет оберегать каркас от негативного влияния внешней среды даже в случае появления царапин на краске. Оптимальный способ защитить автомобиль – кислотный грунт, который частично предотвращает необходимость в сварке и обеспечивает долговечное покрытие краской.

Что это такое?

Следует разобраться, что такое кислотный грунт, тогда станут очевидными принципы и основные задачи от применения вещества. Кислотный грунт – это праймер, продаётся в баллончике или в виде жидкости, состоит из фосфорной кислоты, иногда с добавлением цинка, а используется для обеспечения лучшей адгезии, ценится благодаря антикоррозийным характеристикам. Материал применяют для начальной обработки кузовов автомобилей.

Может использоваться только в качестве первого покрытия, поверх слоя кислотной грунтовки нельзя наносить лакокрасочные составы. Защита от коррозии наступает благодаря химическим свойствам средства, в отличие от других грунтов с механическим принципом защиты.

Поверх слоя подобного состава нельзя проводить обработку эпоксидным составом, так как свойства второго слоя нейтрализуют кислотность.

Для борьбы со ржавчиной кислотная грунтовка является сильным средством, поскольку она способна полностью её уничтожить

Материал имеет много полезных свойств, которые выходят за пределы антикоррозийного влияния:

  • термическая устойчивость. Высокая температура не оказывает негативного влияния на вещество;
  • влагостойкость. Грунтовка не вступает в реакцию под влиянием влаги и соли. Перечисленные действия особенно важны в зимнее время, когда много солёных смесей и повышенная влажность;
  • защита от агрессивной среды. Кислотное покрытие никак не реагирует на многочисленные химические соединения: масла, бензины и т. д.;
  • атмосферостойкость. Внешние условия и среда эксплуатации для машины не страшны даже без дополнительного покрытия краской.

В чем особенность состава

Кислотная грунтовка для авто является сильным веществом, которое обеспечивает достаточную устойчивость каркаса к влаге и способствует уничтожению ржавчины. Чтобы полностью устранить ржавчину перед нанесением краски, рекомендуется не экономить на грунте и покупать продукт проверенных брендов.

В основе кислотной грунтовки используется фосфорная кислота и добавка цинка. Средство наносится исключительно в качестве первого слоя, то есть распыляется прямо на металл. Перед использованием, поверхность в обязательном порядке подвергается обезжириванию, это поможет устранить частички ржавчины и жира. Длительность засыхания при комнатной температуре (20 °C) составляет 15 минут.

Когда состав полностью схватится, нужно дополнительно пройтись по участку акриловой грунтовкой. Она помогает выровнять слой. Нанесение состава на швы лучше выполнять кисточкой. При необходимости обрабатывать большие площади, стоит выбирать пульверизатор.

Кислотный грунт представляет собой смесь фосфорной кислоты и цинка, он является первичным и распыляется непосредственно на голый металл

Важно! Нельзя наносить состав на старую шпаклёвку или плохо зачищенный металл, иначе со временем последующее покрытие слезет. Кислотный грунт наносится только на чистый обезжиренный металл, если есть старые частички покрытия можно использовать кислотный эпоксидный грунт.

В каждом случае вещество требует последующего покрытия 2-компонентным грунтом с наполнителем. Когда будет выполнена качественная подготовка, можно приступить к покрытию дополнительным слоем грунтовки, шпаклёвки и краски.

Нельзя непосредственно на кислотное покрытие наносить другие составы, единственным исключением является изолирующая грунтовка. Протравливающий состав – это важнейшая процедура подготовки и обработки автомобиля для обеспечения целостности металла и защиты от коррозии. Всегда веществом покрывают сварочные швы.

Виды кислотных грунтов для авто

Выделяют 4 основные группы на основании состава:

  • с одним компонентом. Состав сразу готов к использованию, нет необходимости подготовки или приготовления. Чаще всего продаётся в баллончике для простого нанесения кислотного грунта, но может приспосабливаться для покрытия краскопультом в 1 тонкий слой. Когда материал приобретёт должные качества, его сверху обрабатывают акрилом с добавками отвердителя;
  • 2-компонентная. Перед употреблением нужно обязательно приготовить вещество, для этого достаточно перемешать с активатором. По консистенции средство может иметь твёрдую или мягкую форму. Профессионалы предпочитают твёрдые варианты, так как они приводят к появлению более прочной плёнки по всей поверхности. Может наноситься в 1, 2 или 3 слоя, стоит учитывать рекомендации изготовителя продукта. Между каждым нанесением нужно выдерживать интервал около 5 минут в тёплых помещениях;

Однокомпонентная грунтовка готова к употреблению — она не требует предварительного приготовления

  • реактивная форма. Используется для обработки чистого металлического покрытия, им формируют мизерный слой (от 8 до 13 микрон). Сверху также нуждается в покрытии акрилом. Является основой, на него далее наносятся необходимые слои;
  • Self-Etch primer. Относится к ингредиентам, которые входят в состав грунта, обозначает состав с добавлением цинка. Применяется для устранения неровностей и повышения качества сцепления. Изначально кислотное вещество воздействует на металл, отчего появляется защитное покрытие из застывших полимерных продуктов.

Принципы использования, максимальная толщина слоя и методы смешивания описаны для каждого продукта отдельно и могут существенно отличаться.

Подготовка кузова к грунтовке

Для качественного и долговечного покрытия на машине нужно использовать отработанную технологию обработки:

  1. Изначально проводятся подготовительные работы в помещении, где будет проходить покраска.
  2. Поверхность очищается до металла, устраняя остатки старой краски, грязи, пыли, шпаклёвки и т. д.
  3. Внешний осмотр транспортного средства и выбор оптимальной эмали.
  4. Защита деталей автомобиля, которые не должны подвергаться обработке.
  5. Обезжиривание металла, а также шлифовка с помощью абразивного средства.
  6. Использование шпаклёвки.
  7. Формирование антикоррозийного покрытия.

В процессе очистительных и обезжиривающих работ лучше брать кисть, можно использовать форму аэрозоля. При применении баллончика покрытие получается значительно ровнее, дальше проще наносить кислотный грунт.

Кислотный грунт для авто — это средство для защиты от коррозии и улучшения адгезионных качеств материала

В процессе выполнения этапов потребуется использование защитных средств:

  • для дыхания – респиратор;
  • для рук – резиновые перчатки;
  • для кожи тела – плотная одежда и обувь.

Очищенная поверхность металла имеет высокий риск появления коррозии. Металлический корпус не может выстоять против малейших повреждений. Для создания защитного слоя используется кислотная грунтовка, она является связующим слоем между лакокрасочным финишным покрытием и материалом корпуса.

Если неправильно подобрать материал грунтовки, часто появляются разнообразные дефекты на окончательном слое покраски. Это приводит к затратам времени, сил и материалов.

Методы нанесения кислотного грунта

Методик обработки кузовных элементов существует несколько:

  • с помощью кисточки;
  • посредством аэрозоля;
  • способом полного погружения, чаще используется для небольших элементов;
  • методом распыления под действием электрической энергии;
  • электроосаждением. Вариант обработки подразумевает использование принципа электрофореза. Часть корпуса, которую нужно окрасить, укладывается в резервуар и является заряженным звеном цепи.

Способ полного погружения может применяться только в производственных условиях.

Эпоксидный и акриловый составы могут наноситься прямо под покраску авто — по сути, они для этого и предназначены

Во время любых работ, использующих кислотные средства, следует применять особые методы защиты. При попадании вещества на кожу или слизистые оболочки, могут наступить повреждения.

Грунтовки всегда наносятся перед покраской, но в отношении шлифования не всё так однозначно, в одних случаях используется шлифовка, а в других – нет.

Главными условиями качества являются:

  • использование только высококачественных продуктов;
  • точное и правильное соблюдение технических мер;
  • достаточная квалификация мастера.

Для предотвращения коррозии используется поливинил-бутилен, который входит в формулу большинства материалов. В грунтовке нуждаются автомобили и отдельные детали из:

Запрещено на кислотное покрытие наносить средства, состоящие из полиэфирных основ. Рекомендуется спустя 1 час после обработки перейти к дальнейшей работе.

Что еще нужно знать

Нередко можно встретиться с ситуацией, когда мастера из СТО предлагают нанесение кислотной основы поверх кузова в качестве подготовки под покраску. Методика имеет название Wash Primer. Последствием грунтования кислотой является сохранение характеристик состава на протяжении 2 суток после перемешивания ингредиентов. Материал засыхает за 2 часа.

Кислотный слой наносится только после полного обезжиривания, проверяемого при помощи чистой салфетки

Лучший результат наступает при шлифовании реактивного грунта с помощью шкурки с небольшой зернистостью.

Самой популярной грунтовкой является группа, состоящая из 2 компонентов. Поверх него наносится грунт-наполнитель, это обязательная процедура перекрытия. При помощи дополнительного покрытия удаётся увеличить износостойкость.

Если использовать подобное средство, удаётся полностью остановить распространение коррозии по кузову или предотвратить её появление.

Кислотный состав отличается от других видов грунта возможностью использования шлифовки, но такая процедура может быть запрещена, если кузов обладает дефектами.

Как грунтовать кислотным грунтом

Весь алгоритм действий довольно простой, мало чем отличается от стандартного грунта:

  1. Полная очистка основания.
  2. Обработка обезжиривающим составом или обычным растворителем.
  3. Покрытие грунтом. Можно использовать кисточку, но она подходит только для небольших площадей обработки. В остальных случаях актуально использовать распылитель. Следует избегать обильной обработки поверхности, достаточно 1 тонкого слоя.
  4. Ожидать 2 часа, за этот промежуток химические реакции закончатся.
  5. Нанесение стандартного грунта.

Если наносить слой с помощью аэрозоля в баллончике, то покрытие получается более ровным, чем если это делать с помощью кисти

Примеры кислотных грунтовок (марки)

Выбрать лучший кислотный грунт можно только с учётом индивидуальных характеристик авто, но часто предпочтение отдают:

DUR 1:1 (реактивный грунт с фосфатом)

Производитель DUR добился быстрого приобретения прочности, высокой степени надёжности покрытия и отличных адгезивных свойств. Позитивным качеством является отсутствие хроматом среди ингредиентов. Для ускорения отверждения применяют катализатор реакции, он идёт в комплекте. Продаётся в форме серой жидкости в таре по 1 л.

Body 960 Wash Primer

Является грунтом из 2-компонентов, он обладает жёлтым цветом и используется для покрытия нержавеющих, оцинкованных, алюминиевых и гальванизированных материалов. Перед применением нужно смешать средство с отвердителем, а затем смесь наносят на металлическую поверхность слоем 10 мкм. Длительность высыхания составляет 10 минут.

После нанесения нет необходимости в шлифовке, только выравнивающем слое, которым может стать любой двухкомпонентный материал, исключением является полиэстер.

Mobihel

Относится к однокомпонентной группе. Обладает серым цветом и отличается высокими антикоррозийными параметрами. Может выполнять протекцию стали, оцинковки и алюминия.

Химические свойства материала служат очень эффективной профилактикой против возникновения ржавчины и защищают материал от воздействия соли и влаги

Применяется средство следующим образом:

  1. Грунт смешивается с жидкостью для разбавления в соотношении 5 к 1.
  2. Поверхность подготавливается с помощью мелкозернистого материала.
  3. Провести распыление в 1 слой с помощью краскопульта, установив дюзу 1,3.
  4. Ожидать застывания 1 час, шлифовка теперь не нужна, можно сразу обрабатывать грунтовкой, краской и лаком.

Radex CR 1+1

Грунт хорошо протравливает металл для защиты от коррозии. Состоит из 2 компонентов: основной жидкости и отвердителя. Оба состава продаются в ёмкостях по 1 л. Перед работой нужно смешать оба ингредиента из соотношения 1 к 1.

Профессионалы рекомендуют средство для обработки совершенно новых деталей кузова из стали и для ремонтных работ над алюминием, сталью и оцинковкой. Достоинством является прочная адгезия, предотвращающая появление коррозии.

Reoflex 2K 1+1

Состоит из 2 компонентов: жёлтый грунт с фосфатирующим компонентом и отвердитель. Применяется для восстановления повреждённых покрытий, но может использоваться для новых деталей. Время застывания 15 минут, температура составляет 20 °C. Рекомендуемая толщина слоя 10 мкм.

Заключение

Кислотный слой имеет особые задачи, которые отличаются от эпоксидных и акриловых составов. Всегда применяется для первичной обработки, чтобы обеспечить максимальную защиту поверхности от коррозийного разрушения металла. Благодаря химической протекции, лакокрасочное покрытие долго служит без появления вздутий, трещин и других дефектов. Главное – следовать инструкции нанесения, и соблюдать меры предосторожности.

Разновидности и особенности применения кислотного грунта

Помимо антикоррозионного действия, основным свойством материала выступает высокий уровень адгезии (сцепления поверхностей). Грунт получил свое название из-за того, что его затвердевание происходит за счет действия кислоты.

Особенность нанесения состава

Грунтовка — средство, достаточно хорошо оберегающее металл от негативных воздействий окружающей среды. При выборе этого материала нужно обращать внимание на производителей и не гнаться за дешевизной.

Важно! Рекомендуется при нанесении состава на большую часть автомобильного кузова применять аэрозольный метод, а швы от сварки обрабатывать кистью.

Распыление производится непосредственно на металлическую поверхность, лишенную какой-либо защиты. Перед этим выполняется процедура обезжиривания, смысл которой заключается в устранении очагов коррозии.

Для затвердевания грунтовки достаточно 15 минут при условии, что температура воздуха будет составлять примерно +20 °C. Нужно подождать, пока состав полностью высохнет, после этого выполнить обработку поверхности выравнивающим акриловым грунтом.

Важно! Этот состав рекомендуется наносить исключительно на чистый металл. Старую шпаклевку желательно убрать. Если по каким-то причинам сделать это нельзя, следует использовать эпоксидный грунт.

Наносить на кислотный грунт дополнительный слой шпатлевки и вторичной грунтовки можно только после обработки поверхности двухкомпонентным наполнителем, а уже затем необходимо приступать к покраске.

Характерные черты кислотного протравливающего грунта:

  • устойчивость к воздействию влаги и агрессивных материалов, присутствующих в почве;
  • защита от механических воздействий извне;
  • долговечность.

Виды кислотных грунтов для авто

Существуют различные типы грунтовок, применяемые для обработки кузова автомобиля. Вот основные из них:

  1. Реактивный грунт (Wash primer). Грунтовку подобного типа наносят на чистый металл тонким слоем толщиной в 8 – 13 микрон. После этого кузов обрабатывают акриловым материалом. Wash primer используется в качестве основы для нанесения последующих слоев.
  2. Self-Etch primer. Этот материал — наполняющий кислотный грунт, в состав которого входит цинк. Предназначается для сглаживания неровностей обрабатываемой поверхности и улучшения сцепления с другими средствами. Сначала кислота вступает в реакцию с металлом, затем формируется защитная пленка благодаря высохшим полимерам и антикоррозийным веществам.
  3. Однокомпонентный кислотный грунт. Материал не требует добавления активатора. Наносится на поверхность из аэрозольного баллона или краскопульта одним тонким слоем. После высыхания его следует покрыть акриловой наполняющей грунтовкой с отвердителем.
  4. Двухкомпонентный кислотный грунт. Перед использованием материал соединяют с активатором, после чего наносят одним, двумя или тремя слоями (зависит от рекомендаций производителя). Перерывы составляют приблизительно 5 минут в условиях комнатной температуры.

Подготовка кузова к грунтовке

Необходимо тщательно соблюдать технологию на всех этапах. Основные из них:

  1. Подготовка помещения, в котором будут выполняться работы.
  2. Очистка поверхности транспортного средства от грязи и пыли.
  3. Осмотр авто, подбор краски.
  4. Защита от воздействия краски элементов кузова, не нуждающихся в обработке.
  5. Обезжиривание поверхности, шлифование с применением абразивных материалов.
  6. Нанесение шпатлевки.
  7. Создание покрытия, препятствующего коррозии.

В процессе очистки и обезжиривания предпочтительнее использовать кисть или аэрозоль в баллончике. В последнем случае покрытие получается более ровным. Затем можно наносить кислотный слой.

  • респиратор;
  • рабочая одежда и обувь;
  • перчатки.

Оголенное металлическое покрытие кузова автомобиля подвергается коррозионной опасности и, как правило, не способно противостоять даже незначительным повреждениям. Грунтовка, нанесенная на каркас транспортного средства, выступает в качестве промежуточного звена между металлическим корпусом и краской.

Важно! Неправильно подобранный или некачественный состав грунта нередко приводит к дефектам лакокрасочного покрытия.

Методы нанесения кислотного грунта

Обрабатывать кузов авто можно несколькими способами:

  1. С применением кисти.
  2. Посредством распыления аэрозоля.
  3. С помощью погружения металла в раствор грунтовки.
  4. Путем распыления с использованием электричества.
  5. Электроосаждением. Процесс основан на принципе электрофореза. Изделие, которое нуждается в покраске, помещается в емкость и выступает в качестве заряженного элемента цепи (положительного или отрицательного).

Важно! Окунание в грунтовку применимо исключительно в заводских условиях.

При работе с кислотными грунтами следует придерживаться определенных мер предосторожностей, поскольку в их состав входят небезопасные химические компоненты.

Грунт наносится до покраски и может как шлифоваться, так и не подвергаться этой процедуре. Применение качественных материалов, строгое соблюдение порядка выполнения процедур и квалификация исполнителя непосредственным образом влияют на уровень защищенности обработанного кузова от коррозии.

Предотвратить возникновение ржавчины помогает поливинил-бутилен, входящий в состав применяемых материалов. Грунтом покрывают поверхности из:

  • алюминия;
  • нержавеющей стали;
  • обычного металла;
  • оцинкованной стали.

к содержанию ↑

Примеры кислотных грунтовок

В процессе работе над кузовом авто используются различные материалы. Следует иметь в виду, что ожидаемый результат можно получить только с помощью средств, которые оправдали себя на практике. К ним относятся:

  • Фосфатирующий реактивный грунт DUR 1:1;
  • Body 960 Wash Primer;
  • Radex CR 1+1 с активатором;
  • Reoflex Washprimer 2K 1+1;
  • Mobihel Primer.

Фосфатирующий реактивный грунт DUR 1:1

Это средство российского производства:

  • быстро высыхает;
  • надежно закрепляется на кузове;
  • защищает металл от коррозии.

В материале нет хроматов (солей хромовой кислоты). Затвердевание происходит при помощи реактивного катализатора, который входит в комплект.

Body 960 Wash Primer

Этот двухкомпонентный грунт наносят на детали из нержавеющего или оцинкованного материала, алюминиевые и гальванизированные. Перед применением средство смешивают с отвердителем, после чего покрывают поверхность слоем приблизительно в 10 микрон.

  • быстрая сушка;
  • нет нужды в шлифовке;
  • возможность наносить на него любые двухкомпонентные материалы (кроме тех, в состав которых входит полиэстер).

к содержанию ↑

Radex CR 1+1 с активатором

Этот кислотный протравливающий грунт из двух компонентов достаточно эффективно предохраняет корпус автомобиля от ржавчины. Помимо самого средства, в комплекте есть отвердитель Radex CR Activator. Объем — 1 л, как и самой грунтовки. Перед применением их смешивают в пропорции 1:1.

Средство хорошо зарекомендовало себя при обработке металлических частей авто, в том числе оцинкованных и новых поверхностей. Грунт прочно закрепляется на каркасе и препятствует проникновению ржавчины.

Reoflex Washprimer 2K 1+1

Используется при восстановлении лакокрасочного покрытия кузова или тогда, когда оно отсутствует. Толщина слоя составляет примерно 10 микрон. Время высыхания — 15 минут при температуре 20 °C. В комплекте с этой фосфатирующей грунтовкой идет кислотный отвердитель.

Mobihel Праймер

Этот первичный однокомпонентный грунт хорошо защищает кузов от коррозии. Наносят на обычный или оцинкованный металл, изделия из алюминия путем распыления. Перед этим смешивают с разбавителем в соотношении 5:1 (5 частей грунта и 1 разбавителя). Высыхает в течение часа при 20 °C, после наносятся следующие материалы.

Важно! Грунт Mobihel Праймер не совместим с полиэфирной шпатлевкой.

Заключение

Предназначение кислотного грунта — подготовить металлическую поверхность авто к покраске и защитить от коррозии. После этого требуется вторичная обработка. В то же время химические свойства материала позволяют эффективно защищать каркас авто от воздействия соли и влаги.

0 0 голос

Рейтинг статьи

какой лучше, сколько сохнет, применение


Металлические конструкции подвержены образованию ржавчины, а она в свою очередь существенно влияет на прочность изделия. Поэтому требуется проводить дополнительную обработку поверхности специальными средствами, которые могут создать защитный слой. К подобным средствам относится кислотный грунт, который качественно справляется с данной задачей. Подробно о том реактивный грунт что это такое будет рассказано далее.

Кислотная или реактивная грунтовка — что это такое, для чего нужна

Чтобы понять, следует ли его выбирать среди всего многообразия средств, представленных на рынке для создания антикоррозийного слоя, необходимо разобраться фосфатирующий грунт что это такое. Он может продаваться в баллонах, также как жидкий раствор. В составе используется фосфатная кислота, может добавляться цинк, помогает получить кроме защиты от образования ржавчины и покрытие с хорошей адгезией. Популярно применение фосфатного грунта для первоначальной обработки кузовов автомобилей.

Допустимо нанесение лишь как первое покрытие, сверху не получится наносить лакокрасочные средства, наносится другой грунт.

Получают защитный слой от коррозии благодаря химическим элементам в составе, слой обладает механической защитой, что отличает его от других грунтовочных растворов. Нельзя поверх красить эпоксидные составы, их элементы перекрывают свойство кислотности. При этом кислотная грунтовка обладает целым рядом положительных свойств:

  • Устойчивость к высокотемпературному воздействию;
  • Водостойкость, грунтовочный слой не вступает в реакцию с солью и водой. Благодаря этому в зимний период сохраняются полезные свойства покрытия;
  • Устойчивость к негативному воздействию окружающих факторов, выдерживает воздействие бензина, масел и других составов;
  • Металлическая поверхность, обработанная травящим грунтом, сможет выдерживать различные влияния природных факторов, при этом не нужна обработка краской;
  • Быстрый темп высыхания, последующий слой может быть нанесен через пять минут.

Популярно применение фосфатного грунта для первоначальной обработки кузовов автомобилей.

В чем особенность состава

Грунтовка кислотная по металлу это усиленное средство, покрывающее поверхности изделия и создающая стойкое покрытие к воздействию влаги, также способствующее ликвидации коррозии. Для полной ликвидации проржавелых зон специалисты советуют наносить растворы в достаточном количестве, также при выборе отдавать предпочтение качественным и известным маркам.

Как говорилось ранее, нанесение производится сразу на металл, обычно выбираются аэрозоли, с помощью которых распыляется средство. Предварительно следует произвести этап обезжиривания. После полной просушкой наносится акриловая грунтовочная смесь, для получения выравнивающего эффекта.

Не допускается нанесение на поверхность, где осталась старая шпаклевка, либо некачественно очищенное изделие, иначе слой может слишком быстро отойти от основания.

Главным отличием от эпоксидных или акриловых грунтовок является создание химической защиты, а не механической. Поэтому сверху не наносятся любые средства, кроме изолирующей грунтовочной смеси.

Грунтовка кислотная по металлу — это усиленное средство, покрывающее поверхности изделия и создающая стойкое покрытие к воздействию влаги, также способствующее ликвидации коррозии.

Основные виды кислотных грунтов

Протравливающий грунт создается в разных видах, знание свойств каждого поможет подобрать подходящий вариант без проблем. Выделяется четыре основных вида:

  • Однокомпонентный, который можно будет наносить сразу же, нет надобности, разводить его дополнительно перед работой. Стандартно продается в аэрозольном виде, хотя есть и жидкие варианты, которые можно будет наносить с помощью пульверизатора. После просыхания, переходят к нанесению акриловыми средствами, которые также в составе имеют отвердитель;

    Стандартно продается в аэрозольном виде.

  • Двухкомпонентный, требует предварительного соединения двух элементов. Один из них основное вещество, второй активатор. Выпускается в твердом и мягком виде. Специалисты выделяют твердый вариант, как более прочный, образуемая пленка получается более устойчивой. Сколько слоев лучше наносить производитель прописывает на упаковке, каждый слой должен сначала просохнуть перед покраской следующего;

    Двухкомпонентный, требует предварительного соединения двух элементов.

  • Реактивная форма, применяется, чтобы создать микро слой (от 8 до 13 микрон), возможно нанесение лишь на очищенную поверхность, далее также обрабатывается акриловым грунтовочным составом, создает основание, которое потом следует обработать другими средствами;

    Реактивная форма, применяется, чтобы создать микро слой.

  • Self-Etch праймер, означает наличие в составе цинка. Помогает выровнять поверхность и создать хорошую сцепляемость с материалами. Первоначально оказывается влияние на саму металлическую поверхность кислотами, после создается защитный слой.

    Помогает выровнять поверхность и создать хорошую сцепляемость с материалами.

Прежде чем наносить состав необходимо внимательно прочитать инструкцию производителя, ведь правила нанесения у каждого средства могут несколько отличаться.

Подготовка кузова к грунтовке

Чтобы получить желаемый качественный результат, сами работы по покраске необходимо проводить по определенным правилам. Специалисты говорят, что нужно действовать по следующей технологии:

  1. Начинают с подготовки помещения, где будет окрашиваться кузов. Необходимо его очистить, протереть пыль, чтобы она не оседала на поверхность.
  2. Затем подготавливают сам автомобиль, снимают старое покрытие полностью, достигая непосредственно металлического покрытия.
  3. Следует осмотреть автомобиль после этого, чтобы определиться с будущей эмалью.
  4. Элементы машины, которые не должны быть покрашены, прикрываются.
  5. Необходимо обезжирить основание.
  6. Отшлифовать поверхность.
  7. Наноситься шпатлевка.
  8. Наносится средство.

Чтобы провести этапы очищения и обезжиривания подойдет кисточка, либо аэрозольные средства. Когда выбирается второй вариант, то покрытие будет ровнее, это упрощает процесс нанесения реактивного грунта.

Работы должны осуществлять в средствах защиты. Мастер должен надеть респиратор, защитные перчатки и одежду, обувь должна быть плотной.

Реактивный грунт позволяет создать надежное покрытие, которое защитит основание из металла от образования коррозии.

Реактивный грунт позволяет создать надежное покрытие, которое защитит основание из металла от образования коррозии.

Методы нанесения кислотного грунта

Средство может наноситься разными способами. Каждый сам выбирает, какой вариант лучше для него подходит, некоторые варианты выполнимы только при производственном окрашивании, потому что требуют специального оборудования и условий. Выделяются нижеперечисленные методики:

  • С использованием кисти;
  • С использованием кислотного грунта в баллончике;
  • Путем полного погружения, обычно он применяется, чтобы покрыть мелкие элементы и в производственных масштабах;
  • Распыляя с помощью электрической энергии;
  • Электроосаждением. Этот метод подразумевает погружение части изделия в резервуар, где становится заряжающим элементом цепи.

Необходимо соблюдать технику безопасности. Попадание грунта на кожный покров и слизистые оболочки может привести к проблемам со здоровьем. Поэтому надевать респиратор и защитную одежду необходимо.

Средство всегда используется до окрашивания, однако шлифовать поверхность или нет, зависит от ситуации. Лучше использовать шкурку с мелкой зернистостью. Чтобы получить качественный результат, нужно:

  • Выбирать качественную продукцию;
  • Обязательное следование инструкции и техническим мерам;
  • Необходим опыт подобной работы.

Составы могут наноситься для обработки следующих видов металлических материалов: алюминий, сталь, нержавейка, оцинковка.

Средство всегда используется до окрашивания, однако шлифовать поверхность или нет, зависит от ситуации.

Как правильно грунтовать

Чтобы загрунтовать поверхность из металла трявящим грунтом, необходимо строго придерживаться правил работы. Профессионалы рекомендуют выполнять следующие этапы:

  • Поверхность очищается от всех видов загрязнений, старое покрытие должно сниматься;
  • Проводиться обезжиривание любым подходящим средством;
  • На сухую поверхность наноситься грунтовочный раствор. Для небольших изделий подойдет кисть, в остальных случаях лучше выбирать методику распыления. Не следует делать толстый слой, он должен быть тонким;
  • Выжидают пару часов до завершения химической реакции;
  • Затем можно переходить к обработке обычными грунтовками;
  • Иногда требуется шпаклевать поверхность.

Для небольших изделий подойдет кисть, в остальных случаях лучше выбирать методику распыления.

Сколько сохнет фосфатный грунт

Время высыхание может зависеть от марки кислотного грунта, поэтому следует смотреть инструкцию от производителя. В среднем нанесение последующего слоя допускается через пять минут. Обычно полностью сохнуть слой должен полчаса перед обработкой другими грунтовочными составами.

Обычно полностью сохнуть слой должен полчаса перед обработкой другими грунтовочными составами.

Примеры кислотных грунтовок

Хорошее покрытие кузова можно получить только, если выбирать высококачественную продукцию. Новичкам будет проще при выборе, если они будут знать проверенные марки, которые востребованы профессионалами. По этой причине далее будут описаны популярные виды.

Хорошее покрытие кузова можно получить только, если выбирать высококачественную продукцию.

Фосфатирующий реактивный грунт DUR 1:1

Производитель грунта российский. Вещество выделяется быстротой высыхания, надежностью сцепления с поверхностью, создает хороший антикоррозийный слой. Процесс отвердения происходит за счет наличия катализаторов, это двухкомпонентный состав.

Вещество выделяется быстротой высыхания, надежностью сцепления с поверхностью, создает хороший антикоррозийный слой.

Body 960 Wash Primer

Двухкомпонентный вид, подходит на разные типы металлов. Перед обработкой поверхности необходимо смешать два компонента, идущих вместе в упаковке, слой делается не толще 10 микрон. Очень быстро высыхает, не требуется предварительно проводить этап шлифования изделия, поверх допускается нанесение любых двухкомпонентных средств, исключением является элементы, имеющие в составе полиэфир.

Очень быстро высыхает, не требуется предварительно проводить этап шлифования изделия.

Radex CR 1+1 с активатором

Эффективное средство, создающее надежную защиту от коррозии, также состоит из двух компонентов, показывает хорошие показатели сцепления с поверхностью и долгое время защищает металл от образования ржавчины. Подходит для разных металлов.

Эффективное средство, создающее надежную защиту от коррозии.

Reoflex Washprimer 2K 1+1

Грунт используется, чтобы защитить поврежденное лакокрасочное покрытие от ржавых образований, также, если покрытие совсем отсутствует, эффективно справляется с защитой металла. Сохнет за 15 минут, если температурные показатели в помещении держаться от +20 градусов.

Грунт используется, чтобы защитить поврежденное лакокрасочное покрытие от ржавых образований.

Mobihel Праймер

Однокомпонентный грунт, который хорошо проявляет себя как защитник металлической поверхности от коррозии, предварительно требуется перемешать с разбавителем, наноситься путем распыления. Высыхание при +20 градусах составляет 60 минут.

Однокомпонентный грунт, который хорошо проявляет себя как защитник металлической поверхности от коррозии.

Кислотный грунт способен перекрыть следы ржавчины и создать надежную защиту металлической поверхности на долгое время от различных воздействий окружающей среды. Главное выбирать проверенные средства, тогда результат получится прочный и долговечный.

Видео: Тест кислотных грунтов

Кислотные грунты для автомобиля в Санкт-Петербурге

Показано продуктов: 4

2 350

Двухкомпонентный грунт с кислотным отверждением. Предназначен для обеспечения антикоррозионной защиты и высокой адгезии к голому металлу, алюминию, нержавеющей и гальванизированной стали.

Отличается отсутствием в составе хроматов, характеризуется быстротой высыхания, допускается окрашивание всеми видами эмалей. Рекомендован для нанесения способом «мокрый по мокрому» комплектуется активатором AL507.

650

Анти-корозионный двухкомпонентный фосфатирующий грунт с кислотным отвердителем. Применяется в ремонтных системах при нарушенном или полностью отсутствующем заводском покрытии.

500

P 965 WASH PRIMER — однокомпонентный кислотосодержащий протравливающий грунт.  Используется в качестве защитного и адгезионного грунта на любых видах металла.  Удобный и быстрый в применении. Отличные антикоррозийные свойства и адгезия на сталь, оцинковку, алюминий, нержавеющую сталь, гальванические покрытия.  Прозрачный, не содержит вредных хроматов, не требует добавления разбавителя (активатора), не требует тщательного перемешивания перед нанесением.

519 – 1 800

 

Грунт кислотный антикоррозийный 2К в комплекте с отвердителем BODY 960 активатор. Отличный двухкомпонентный грунт для нанесения на железо, алюминий, хромированные, нержавеющие и оцинкованные поверхности. Обладает прекрасными антикоррозийными свойствами. Смешивается с оксидным отвердителем BODY 960 Activator (731). Наносится в один слой толщиной 10 мкм. Сохнет около 10 минут и не требует шлифовки. Окрашивается любыми двухкомпонентными материалами, кроме неотверждающихся материалов на полиэфирной основе.

Цвет Желто-зеленый

В чем особенность состава кислотного грунта?

Кислотный грунт для автомобиля, когда применять и как наносить

Когда речь идёт о кис­лот­ном грун­те, зву­чат такие назва­ния, как фос­фа­ти­ру­ю­щий, тра­вя­щий, реак­тив­ный грунт. В этой ста­тье рас­смот­рим, есть ли какое-либо отли­чие этих про­дук­тов или это раз­ные назва­ния одно­го и того же вида грун­та. Раз­бе­рём­ся, когда при­ме­ня­ет­ся и как «рабо­та­ет» кис­лот­ный грунт и в чём отли­чие одно­ком­по­нент­ных и двух­ком­по­нент­ных кис­лот­ных соста­вов.

p, blockquote 1,0,0,0,0 –>

Кис­лот­ный грунт явля­ет­ся пер­вич­ным грун­том, как и эпок­сид­ный и нано­сит­ся на чистый металл (см. ста­тью “кис­ло­и­ный или эпок­сид­ный грунт, какой выбрать”). Кис­лот­ный грунт, про­трав­ли­вая металл, очи­ща­ет его и немно­го изме­ня­ет поверх­ность для улуч­ше­ния даль­ней­шей адге­зии напол­ня­ю­ще­го грун­та, а так­же обес­пе­чи­ва­ет пре­об­ра­зо­ва­ние мел­кой ржав­чи­ны. Тра­вя­щий грунт не уби­ра­ет, но оста­нав­ли­ва­ет кор­ро­зию от рас­про­стра­не­ния. Важ­но мак­си­маль­но тща­тель­но уда­лить всю ржав­чи­ну. На остат­ки, кото­рые невоз­мож­но убрать, и воз­дей­ству­ет кис­лот­ный грунт.

p, blockquote 2,0,0,0,0 –>

Содер­жа­ние:

Кислотный, фосфатирующий, травящий или реактивный грунт?

Все эти назва­ния, так или ина­че, обо­зна­ча­ют грунт, в соста­ве кото­ро­го есть кис­ло­та. На англий­ском язы­ке суще­ству­ет три раз­ных назва­ния кис­лот­ных грун­тов, кото­рые ука­зы­ва­ют­ся так­же и на упа­ков­ках, про­да­ю­щих­ся в Рос­сии. Etch или etching primer – тра­вя­щий грунт, self etch/etching primer – тра­вя­щий грунт, име­ю­щий ингре­ди­ен­ты, кото­рые сра­зу после дей­ствия кис­ло­ты въеда­ют­ся в металл, созда­вая анти­кор­ро­зи­он­ную защи­ту, wash primer – реак­тив­ный грунт, кото­рый так­же содер­жит кис­ло­ту и, по тео­рии, пред­на­зна­чен для нане­се­ния на новый металл, не содер­жа­щий ста­рой шпа­клёв­ки и крас­ки, для повы­ше­ния адге­зии (в осо­бен­но­сти цвет­ных метал­лов, к при­ме­ру аллю­ми­ния).

p, blockquote 4,0,0,0,0 –>

Неко­то­рые кис­лот­ные грун­ты недо­ста­точ­но «силь­ные», что­бы дей­ство­вать на сталь. Нуж­но смот­реть тех­ни­че­ские харак­те­ри­сти­ки про­дук­та.

p, blockquote 5,0,0,0,0 –>

У раз­ных про­из­во­ди­те­лей раз­ные фор­му­лы грун­тов и инструк­ции по при­ме­не­нию. Пер­во­на­чаль­но, тра­вя­щие грун­ты не содер­жа­ли ком­по­нен­тов, повы­ша­ю­щих коро­зи­он­ную защи­ту и, тем более, напол­ни­те­лей, запол­ня­ю­щих мел­кие неров­но­сти. Сей­час мож­но встре­тить кис­лот­ные грун­ты раз­ных про­из­во­ди­те­лей, кото­рые содер­жат и анти­кор­ро­зи­он­ные добав­ки и могут быть одно­вре­мен­но напол­ня­ю­щи­ми. Чаще все­го, всё же, хоро­ший кис­лот­ный грунт спо­со­бен хими­че­ски дей­ство­вать на любой металл, под­го­тав­ли­вая его для сле­ду­ю­ще­го слоя напол­ня­ю­ще­го грун­та, а так­же пре­об­ра­зу­ет неболь­шое коли­че­ство труд­но счи­ща­е­мой ржав­чи­ны и пас­си­ви­ру­ет поверх­ность метал­ла, делая его не актив­ным к окис­ле­нию, а сле­до­ва­тель­но к кор­ро­зии.

p, blockquote 6,0,0,0,0 –>

Реактивный грунт (Wash primer)

Реак­тив­ный грунт (Wash primer) и кис­лот­ные грун­ты похо­жи по сво­е­му дей­ствию. Wash primer нано­сит­ся толь­ко на чистый металл. Он не запол­ня­ет рис­ки и мел­кие неров­но­сти и тре­бу­ет обя­за­тель­но­го нане­се­ния поверх него акри­ло­во­го грун­та. Wash primer – это орто­фос­фор­ная кис­ло­ты в рас­тво­ре поли­ви­нил­бу­ти­раль­но­го поли­ме­ра, изо­про­пи­ло­во­го спир­та и дру­гих ингре­ди­ен­тов. Такой грунт нано­сит­ся тон­ким сло­ем, созда­вая сухую плён­ку, тол­щи­ной 8–13 мик­рон. Этот грунт дела­ет про­цесс покрас­ки более эффек­тив­ным и добав­ля­ет метал­лу анти­кор­ро­зи­он­ные свой­ства. В даль­ней­шем, при экс­плу­а­та­ции, даже при незна­чи­тель­ном повре­жде­нии лако­кра­соч­но­го слоя, металл, обра­бо­тан­ный реак­тив­ным грун­том не будет ржа­веть.

p, blockquote 7,0,1,0,0 –>

Этот грунт пас­си­ви­ру­ет металл перед нане­се­ни­ем напол­ня­ю­ще­го грун­та. Поверх­ность метал­ла ста­но­вит­ся неак­тив­ной к кис­ло­ро­ду, содер­жа­ще­му­ся в воз­ду­хе и воде. Созда­ёт­ся очень тон­кая плён­ка, он пере­хо­дит в пас­сив­ное состо­я­ние, и тор­мо­зят­ся про­цес­сы кор­ро­зии. Так­же, созда­ёт­ся хоро­шее осно­ва­ние для нане­се­ния сле­ду­ю­ще­го слоя напол­ня­ю­ще­го грун­та.

p, blockquote 8,0,0,0,0 –>

Wash primer обыч­но реко­мен­ду­ют нано­сить на алю­ми­ний и дру­гие метал­лы для улуч­ше­ния адге­зии с после­ду­ю­щим покры­ти­ем. На алю­ми­нии и оцин­ко­ван­ном метал­ле, без под­го­тов­ки этим прай­ме­ром, покры­тие пло­хо дер­жит­ся.

p, blockquote 9,0,0,0,0 –>

Однокомпонентный кислотный грунт

Одно­ком­по­нент­ный кис­лот­ный грунт не тре­бу­ет добав­ле­ния акти­ва­то­ра. Такой грунт про­да­ёт­ся как для нане­се­ния крас­ко­пуль­том, так и в бал­лон­чи­ках.

p, blockquote 10,0,0,0,0 –>

p, blockquote 11,0,0,0,0 –>

Кис­лот­ный грунт не содер­жит напол­ни­те­лей и при высы­ха­нии даёт очень тон­кий слой.

p, blockquote 12,0,0,0,0 –>

Доста­точ­но одно­го тон­ко­го слоя. Нане­се­ние тол­сто­го слоя или несколь­ких тон­ких сло­ёв одно­ком­по­нент­но­го кис­лот­но­го грун­та не сде­ла­ет его более эффек­тив­ным.

p, blockquote 13,0,0,0,0 –>

Нуж­но пом­нить, что любой одно­ком­по­нент­ный про­дукт нахо­дит­ся в не ста­биль­ном (не затвер­дев­шем) состо­я­нии и может ока­зы­вать дей­ствие на сле­ду­ю­щий слой покры­тия. Сра­зу после высы­ха­ния кис­лот­ный грунт дол­жен быть покрыт двух­ком­по­нент­ным (с отвер­ди­те­лем) акри­ло­вым напол­ня­ю­щим грун­том.

p, blockquote 14,1,0,0,0 –>

Двухкомпонентный кислотный грунт

Двух­ком­по­нент­ный кис­лот­ный грунт необ­хо­ди­мо сме­шать с акти­ва­то­ром, что­бы исполь­зо­вать.

p, blockquote 15,0,0,0,0 –>

Кис­лот­ный грунт с акти­ва­то­ром нано­сит­ся 1 сло­ем. Он не явля­ет­ся само­сто­я­тель­ным пол­но­цен­ным грун­том. Вто­рич­ный (акри­ло­вый) грунт нано­сит­ся сле­ду­ю­щим сло­ем, через 15–20 минут.

p, blockquote 16,0,0,0,0 –>

Из опы­та мож­но ска­зать, что двух­ком­по­нент­ные кис­лот­ные грун­ты луч­ше пре­об­ра­зо­вы­ва­ют остат­ки ржав­чи­ны, остав­шей­ся после чист­ки и дают луч­шую защи­ту от кор­ро­зии.

p, blockquote 17,0,0,0,0 –>

Из чего состоит кислотный грунт?

Кис­лот­ный грунт – это про­зрач­ный состав, с оттен­ком серо­го или свет­ло зелё­но­го цве­тов.

p, blockquote 18,0,0,0,0 –>

Как было уже ска­за­но, состав кис­лот­ных грун­тов может отли­чать­ся друг от дру­га, в зави­си­мо­сти от про­из­во­ди­те­ля и иметь раз­ные про­пор­ции.

p, blockquote 19,0,0,0,0 –>

Базо­вым поли­ме­ром обыч­но слу­жит поли­ви­нил­бу­ти­раль, так­же в соста­ве при­сут­ству­ет фос­фор­ная (орто­фос­фор­ная) кис­ло­та (неболь­шое коли­че­ство), изо­про­пи­ло­вый спирт, хро­мат цин­ка (или фос­фат цин­ка), тальк (око­ло 2%) и дру­гие добав­ки.

p, blockquote 20,0,0,0,0 –>

Хро­мат цин­ка – это ком­по­нент, повы­ша­ю­щий кор­ро­зи­он­ную защи­ту метал­ла. В тра­вя­щем грун­те орто­фос­фор­ная кис­ло­та всту­па­ет в реак­цию с метал­лом, тогда как хро­мат цин­ка хими­че­ски не вза­и­мо­дей­ству­ет с метал­лом. По сути, хро­мат цин­ка может добав­лять­ся в грун­ты с раз­лич­ны­ми поли­ме­ра­ми, такие как эпок­сид­ный, поли­уре­та­но­вый. Он добав­ля­ет анти­кор­ро­зи­он­ные свой­ства про­дук­ту, в кото­рый добав­лен.

p, blockquote 21,0,0,1,0 –>

В неко­то­рых стра­нах хими­че­ский реак­тив хро­мат цин­ка запре­щён из-за высо­кой ток­сич­но­сти, поэто­му в грун­те содер­жат­ся дру­гие ком­по­нен­ты подоб­но­го дей­ствия.

p, blockquote 22,0,0,0,0 –>

Кислотный грунт, применение

“ Кон­ку­рен­том” кис­лот­но­го грун­та явля­ет­ся эпок­сид­ный грунт. О раз­ли­чи­ях этих грун­тов и тон­ко­стях при­ме­не­ния може­те про­чи­тать ста­тью.

p, blockquote 23,0,0,0,0 –>

Нанесение кислотного грунта

p, blockquote 24,0,0,0,0 –>

  • Перед нане­се­ни­ем фос­фа­ти­ру­ю­ще­го грун­та нуж­но осо­бен­но тща­тель­но обез­жи­рить поверх­ность. Луч­ше это делать в рези­но­вых пер­чат­ках, что­бы слу­чай­но не оста­вить отпе­чат­ков.
  • Для созда­ния хоро­шей адге­зии с метал­лом нуж­но нано­сить мок­рый слой кис­лот­но­го грун­та.
  • Луч­ше, что­бы тол­щи­на плён­ки не пре­вы­ша­ла 8 мик­рон, ина­че адге­зия ухуд­ша­ет­ся. Обыч­но доста­точ­но одно­го мок­ро­го слоя.
  • По тех­но­ло­гии, кис­лот­ный грунт эффек­ти­вен на «голом» метал­ле. Попа­да­ние неболь­шо­го коли­че­ства это­го грун­та на ста­рую крас­ку или шпа­клёв­ку не создаст про­бле­мы.
  • После нане­се­ния кис­лот­но­го грун­та нуж­но подо­ждать при­мер­но 10–20 минут пока грунт высох­нет, и нано­сить вто­рич­ный грунт.
  • Перед нане­се­ни­ем акри­ло­во­го напол­ня­ю­ще­го грун­та не тре­бу­ет­ся шли­фо­ва­ния.

Можно ли наносить краску на кислотный грунт?

Основ­ным пра­ви­лом явля­ет­ся то, что кис­лот­ный грунт нуж­но покры­вать свер­ху вто­рич­ным акри­ло­вым грун­том, кото­рый после высы­ха­ния нуж­но под­го­то­вить к покрас­ке шли­фо­ва­ни­ем.

p, blockquote 25,0,0,0,0 –>

Если на одно­ком­по­нент­ный кис­лот­ный грунт нано­сить слой крас­ки, то одной из про­блем может стать дей­ствие жёл­то­го пиг­мен­та грун­та на крас­ку. Он может повли­ять на цвет крас­ки.

p, blockquote 26,0,0,0,0 –>

Ограничения

На кис­лот­ный грунт нель­зя нано­сить шпа­клёв­ку и эпок­сид­ный грунт (см. ста­тью “мож­но ли нано­сить эпок­сид­ный грунт на кис­лот­ный”).

p, blockquote 27,0,0,0,0 –>

p, blockquote 28,0,0,0,0 –> p, blockquote 29,0,0,0,1 –>

nester73 › Блог › Эпоксидные и кислотные грунты

Эпоксидные и кислотные грунты
В последнее время часто возникают вопросы по применению различных грунтов при кузовном ремонте. Давайте вместе с вами попробуем разобраться в том, какие грунты бывают и в каком случае нужно применять каждый из них.

Совместимость ГРУНТОВ в авто покраске Кислотник и акриловый Взаимодействие грунтов, область их применения и совместимость их.

Выделим три основных вида грунтов:
— 2К акриловый наполнитель или выравниватель
— 2К эпоксидный грунт
— 2К кислотный грунт
В качестве специальных мы будем рассматривать 1К протравливающие грунты на эпоксидной основе.

Акриловый 2К грунт выполняет только наполнительную функцию и иногда может быть изолятором одного слоя от другого. Как правило, такие грунты гигроскопичны. (Гигроскопичность – паропроницаемость). Они не напитывают воду как губка, а лишь накапливают испарения и влагу, которая затем конденсируется при охлаждении и скапливается в виде микрокапель на поверхности металла под грунтом. И испаряется эта влага очень долго, из-за этого на металле начинается процесс коррозии. Поэтому акриловые грунты применяют только для наполнения/выравнивания (заливания) шпатлёвки или нижележащих слоёв ЛКП.

Эпоксидные грунты применяют в первую очередь, как изолятор. Такой грунт не пропускает ни воду, ни испарения, ни влагу. Также эпоксидный грунт 2К или 1К является первичным грунтом при работе с такими металлами как алюминий, цинк, медь и др, а также с катафорезными грунтами, так как имеет превосходную адгезию и выступает в роли гидроизолятора. Эпоксидный грунт химически устойчив, но боится УФ излучения, так что нельзя хранить авто на открытом солнце после нанесения на него только эпоксидного грунта.

Третья группа грунтов – 2К кислотные грунты на основе поливинилбутираля. Также их называют фосфатирующими или реактивными. Данные грунты обеспечивают химическую адгезию, а также способствуют образованию защитного слоя на металле. Зачастую мы не имеем возможности удалить ржавчину полностью. В порах и микротрещинах она всё равно остаётся. Именно в этом случае и применяется кислотный грунт. Он преобразует оставшуюся коррозию, превращая её в фосфатную плёнку, которая в дальнейшем будет защищать металл от окисления. Также в результате химических реакций на ремонтную поверхность осаждается свинец или цинк, которые есть кислотном грунте в виде хроматов. Эти металлы практически не окисляются и соответственно уменьшают вероятность образования коррозии на ремонтном участке.

При работе с алюминием, оцинкованной поверхностью, а также с катафорезными грунтами в принципе мы можем применять и эпоксидные и кислотные грунты, кому что ближе.

Теперь рассмотрим наболевший вопрос о совместимости грунтов. Акриловый грунт наполнитель может быть нанесён и на эпоксидный и на кислотный.

Кислотный грунт может быть нанесён на любое 2К отверждённое покрытие в том случае, если не получается нанести его сугубо на металл.

Эпоксидный грунт в свою очередь может быть нанесён на любые отверждённые 2К материалы. Если случаются подрывы старых поверхностей, то это следствие неправильного разбавления, так как зачастую в качестве разбавителя мы применяем растворитель 646, что в корне неправильно. Разбавлять его нужно своим специальным разбавителем. Кстати именно с этим связано его неполное просыхание. 646-ой растворитель, быстро испаряясь, создаёт поверхностную корку, из-за которой остальной растворитель не может выйти из толщи грунта. В итоге мы получаем «пластилин», который приходится снимать шпателем. Если комплект эпоксидного грунта идёт в пропорции 1 к 1 с отвердителем, то такие грунты, как правило, не нуждаются в дополнительном разбавлении.

Эпоксидный грунт в частности можно наносить и на 2К кислотные. И этот вопрос мы рассмотрим подробнее.
Итак, скажу сразу, что наносить можно, но не рекомендуется. Ничего не отвалится и не отслоится. Но эпоксидный грунт растворяет кислотный, даже если вы ничем эпоксидку не разбавляли, и в этом случае свойства реактивного фосфатирующего грунта теряются. Так что практического смысла нет. В некоторых системах всё-таки предусматривается такая комбинация, но, при этом, кислотный должен быть выдержан не менее полутора часов. В полимеризованном (необратимом) состоянии, после матирования он может быть покрыт практически любым видом ЛКП. Но в наших реалиях мы наносим кислотник тонким слоем, так как он склонен к сильной усадке, поэтому не имеем возможности его шлифовать, а покрываем «мокрый-по-мокрому». В свою очередь акриловый грунт-наполнитель абсолютно нейтрален к кислотному. Так что мы можем использовать акриловый в качестве изолятора. Наносится он на кислотный в два полных слоя, сушится и матируется различными, в соответствии с тем, чем он будет в дальнейшем покрываться. Если последующим будет эпоксидный грунт, то градацией P240 или P320, если шпатлёвка, то P150 или P180.
Но тут вы спросите, а почему шпатлёвка? Ведь её нужно класть на голый металл? Шпатлёвку нельзя класть на металл, если на нём не удалось полностью убрать ржавчину. На кислотный грунт её также наносить запрещается, так как её отвердитель, как неудивительно, также растворяет тонко нанесённый кислотный грунт. Если выдержать кислотный более полутора часов, шпатлёвку нанести можно, но мы опять же должны создать риску на поверхности кислотного грунта, что не представляется возможным, так как мы его просто сотрём.
В случае шпатлевания проблемного участка сначала кладём кислотник, затем перекрываем его двумя слоями акрилового наполнителя, сушим, трём P150 или P180. При этом старайтесь на стереть акриловый грунт вместе с кислотным. Затем кладём шпатлёвку. После обработки шпатлёвки, кладём на неё эпоксидный в два неполных слоя с межслойкой 5-7 минут и после 20-ти минутной выдержки опять наносим в два полных слоя акриловый, который затем шлифуем и готовим к покраске. В принципе можно и на эпоксидный покрасить, но для этого нам придётся его высушить (до 16 часов ожидания) и потом с трудом шлифовать, так как он будет очень твёрдым. Если его красить «мокрый-по-мокрому», что также предусматривается, то он должен быть нанесён идеальнейшим образом, что зачастую очень сложно. Проще всё таки накрыть его сразу акриловым, так как он лёгок в обработке, наполняет мелкие риски и немного выравнивает.

Последний тип грунтов, который мы рассмотрим – это 1К протравливающие грунты на эпоксидной основе. Они бывают как в баллонах, так и в литровых банках. Применяются они в основном, как грунты «от протиров» ну или «пропилов». Наносятся на открывшиеся участки металла или шпатлёвки в 2 тонких слоя с межслойной сушкой 4-7 минут и через 20 минут могут быть покрыты большинством ЛКП. Применяются также как грунты для мультиповерхностей, это когда мы имеем пятна различных материалов – металла, шпатлёвки, грунта, краски и т.д. Так вот мы покрываем это всё хозяйство именно таким грунтом. В этом случае он способствуют снижению риска образования таких дефектов как оконтуривание зоны ремонта и просадка материалов. А вообще рекомендуется его использовать в каждом ремонте, как промежуточный слой между шпатлёвкой и акриловым наполнителем. Почему? Потому как часто мы разводим грунт растворителем, который затем впитывается в шпатлёвку, и, испаряясь, в дальнейшем может привести не только к вышеуказанным дефектам, как оконтуривание или просадка материалов, а также к отслоению базы или лака. Так что позаботьтесь о том, чтобы он всегда был под рукой.
Выражаю благодарность в подготовке материала kapikander

Разновидности и особенности применения кислотного грунта

Помимо антикоррозионного действия, основным свойством материала выступает высокий уровень адгезии (сцепления поверхностей). Грунт получил свое название из-за того, что его затвердевание происходит за счет действия кислоты.

Особенность нанесения состава

Грунтовка — средство, достаточно хорошо оберегающее металл от негативных воздействий окружающей среды. При выборе этого материала нужно обращать внимание на производителей и не гнаться за дешевизной.

Важно! Рекомендуется при нанесении состава на большую часть автомобильного кузова применять аэрозольный метод, а швы от сварки обрабатывать кистью.

Распыление производится непосредственно на металлическую поверхность, лишенную какой-либо защиты. Перед этим выполняется процедура обезжиривания, смысл которой заключается в устранении очагов коррозии.

Для затвердевания грунтовки достаточно 15 минут при условии, что температура воздуха будет составлять примерно +20 °C. Нужно подождать, пока состав полностью высохнет, после этого выполнить обработку поверхности выравнивающим акриловым грунтом.

Важно! Этот состав рекомендуется наносить исключительно на чистый металл. Старую шпаклевку желательно убрать. Если по каким-то причинам сделать это нельзя, следует использовать эпоксидный грунт.

Наносить на кислотный грунт дополнительный слой шпатлевки и вторичной грунтовки можно только после обработки поверхности двухкомпонентным наполнителем, а уже затем необходимо приступать к покраске.

Характерные черты кислотного протравливающего грунта:

  • устойчивость к воздействию влаги и агрессивных материалов, присутствующих в почве;
  • защита от механических воздействий извне;
  • долговечность.

Виды кислотных грунтов для авто

Существуют различные типы грунтовок, применяемые для обработки кузова автомобиля. Вот основные из них:

  1. Реактивный грунт (Wash primer). Грунтовку подобного типа наносят на чистый металл тонким слоем толщиной в 8 – 13 микрон. После этого кузов обрабатывают акриловым материалом. Wash primer используется в качестве основы для нанесения последующих слоев.
  2. Self-Etch primer. Этот материал — наполняющий кислотный грунт, в состав которого входит цинк. Предназначается для сглаживания неровностей обрабатываемой поверхности и улучшения сцепления с другими средствами. Сначала кислота вступает в реакцию с металлом, затем формируется защитная пленка благодаря высохшим полимерам и антикоррозийным веществам.
  3. Однокомпонентный кислотный грунт. Материал не требует добавления активатора. Наносится на поверхность из аэрозольного баллона или краскопульта одним тонким слоем. После высыхания его следует покрыть акриловой наполняющей грунтовкой с отвердителем.
  4. Двухкомпонентный кислотный грунт. Перед использованием материал соединяют с активатором, после чего наносят одним, двумя или тремя слоями (зависит от рекомендаций производителя). Перерывы составляют приблизительно 5 минут в условиях комнатной температуры.

Подготовка кузова к грунтовке

Необходимо тщательно соблюдать технологию на всех этапах. Основные из них:

  1. Подготовка помещения, в котором будут выполняться работы.
  2. Очистка поверхности транспортного средства от грязи и пыли.
  3. Осмотр авто, подбор краски.
  4. Защита от воздействия краски элементов кузова, не нуждающихся в обработке.
  5. Обезжиривание поверхности, шлифование с применением абразивных материалов.
  6. Нанесение шпатлевки.
  7. Создание покрытия, препятствующего коррозии.

В процессе очистки и обезжиривания предпочтительнее использовать кисть или аэрозоль в баллончике. В последнем случае покрытие получается более ровным. Затем можно наносить кислотный слой.

  • респиратор;
  • рабочая одежда и обувь;
  • перчатки.

Оголенное металлическое покрытие кузова автомобиля подвергается коррозионной опасности и, как правило, не способно противостоять даже незначительным повреждениям. Грунтовка, нанесенная на каркас транспортного средства, выступает в качестве промежуточного звена между металлическим корпусом и краской.

Важно! Неправильно подобранный или некачественный состав грунта нередко приводит к дефектам лакокрасочного покрытия.

Методы нанесения кислотного грунта

Обрабатывать кузов авто можно несколькими способами:

  1. С применением кисти.
  2. Посредством распыления аэрозоля.
  3. С помощью погружения металла в раствор грунтовки.
  4. Путем распыления с использованием электричества.
  5. Электроосаждением. Процесс основан на принципе электрофореза. Изделие, которое нуждается в покраске, помещается в емкость и выступает в качестве заряженного элемента цепи (положительного или отрицательного).

Важно! Окунание в грунтовку применимо исключительно в заводских условиях.

При работе с кислотными грунтами следует придерживаться определенных мер предосторожностей, поскольку в их состав входят небезопасные химические компоненты.

Грунт наносится до покраски и может как шлифоваться, так и не подвергаться этой процедуре. Применение качественных материалов, строгое соблюдение порядка выполнения процедур и квалификация исполнителя непосредственным образом влияют на уровень защищенности обработанного кузова от коррозии.

Предотвратить возникновение ржавчины помогает поливинил-бутилен, входящий в состав применяемых материалов. Грунтом покрывают поверхности из:

  • алюминия;
  • нержавеющей стали;
  • обычного металла;
  • оцинкованной стали.

к содержанию ↑

Примеры кислотных грунтовок

В процессе работе над кузовом авто используются различные материалы. Следует иметь в виду, что ожидаемый результат можно получить только с помощью средств, которые оправдали себя на практике. К ним относятся:

  • Фосфатирующий реактивный грунт DUR 1:1;
  • Body 960 Wash Primer;
  • Radex CR 1+1 с активатором;
  • Reoflex Washprimer 2K 1+1;
  • Mobihel Primer.

Фосфатирующий реактивный грунт DUR 1:1

Это средство российского производства:

  • быстро высыхает;
  • надежно закрепляется на кузове;
  • защищает металл от коррозии.

В материале нет хроматов (солей хромовой кислоты). Затвердевание происходит при помощи реактивного катализатора, который входит в комплект.

Body 960 Wash Primer

Этот двухкомпонентный грунт наносят на детали из нержавеющего или оцинкованного материала, алюминиевые и гальванизированные. Перед применением средство смешивают с отвердителем, после чего покрывают поверхность слоем приблизительно в 10 микрон.

  • быстрая сушка;
  • нет нужды в шлифовке;
  • возможность наносить на него любые двухкомпонентные материалы (кроме тех, в состав которых входит полиэстер).

к содержанию ↑

Radex CR 1+1 с активатором

Этот кислотный протравливающий грунт из двух компонентов достаточно эффективно предохраняет корпус автомобиля от ржавчины. Помимо самого средства, в комплекте есть отвердитель Radex CR Activator. Объем — 1 л, как и самой грунтовки. Перед применением их смешивают в пропорции 1:1.

Средство хорошо зарекомендовало себя при обработке металлических частей авто, в том числе оцинкованных и новых поверхностей. Грунт прочно закрепляется на каркасе и препятствует проникновению ржавчины.

Reoflex Washprimer 2K 1+1

Используется при восстановлении лакокрасочного покрытия кузова или тогда, когда оно отсутствует. Толщина слоя составляет примерно 10 микрон. Время высыхания — 15 минут при температуре 20 °C. В комплекте с этой фосфатирующей грунтовкой идет кислотный отвердитель.

Mobihel Праймер

Этот первичный однокомпонентный грунт хорошо защищает кузов от коррозии. Наносят на обычный или оцинкованный металл, изделия из алюминия путем распыления. Перед этим смешивают с разбавителем в соотношении 5:1 (5 частей грунта и 1 разбавителя). Высыхает в течение часа при 20 °C, после наносятся следующие материалы.

Важно! Грунт Mobihel Праймер не совместим с полиэфирной шпатлевкой.

Заключение

Предназначение кислотного грунта — подготовить металлическую поверхность авто к покраске и защитить от коррозии. После этого требуется вторичная обработка. В то же время химические свойства материала позволяют эффективно защищать каркас авто от воздействия соли и влаги.

Кислотная грунтовка – что это такое и для чего она нужна

Что представляет собой материал

Общие сведения

Кислотный грунт имеет несколько названий. Еще его именуют реактивным, фосфатирующим, протравливающим или реактивным грунтом, а также вош-праймером. Все эти названия связаны с тем, что основным компонентом состава является фосфорная кислота.

Благодаря ей грунтовка обладает двумя важными качествами – высокой адгезией и антикоррозионными свойствами. Поэтому она получила наибольшее распространение в автомобильной промышленности – данным материалом обрабатывают кузова автомобилей. В автомагазинах можно даже приобрести кислотный грунт в баллончике, который наносится на поверхность как обычная аэрозоль.

Еще одна важная особенность этого состава заключается в том, что он, в отличие от эпоксидных и акриловых аналогов, применяется исключительно как средство для первичного грунтования. Т.е. нанесение лакокрасочного покрытия поверх него категорически запрещается.

Причем, если акриловый или эпоксидный грунт оказывают механическую защиту металла от коррозии, то реактивная грунтовка обеспечивает химическую защиту. Поэтому сразу скажу для новичков, что сравнения, какой лучше грунт – кислотный или эпоксидный, не корректны, так как составы предназначены для разных целей.

Новички часто интересуются – можно эпоксидный грунт наносить на кислотный грунт или нет? Эпоксидный состав хорошо ложится на кислотный, но нейтрализует при этом его химические свойства. Соответственно, делать этого не стоит.

Соли на дорогах в зимнее время приводят к коррозии кузова – вош-праймер защитит автомобиль от таких неприятных последствий

Основные свойства

Помимо высокой адгезии и антикоррозионных свойств, данный материал обладает и другими некоторыми важными качествами:

  • Термостойкость. Состав не утрачивает свои свойства под воздействием высоких температур;
  • Устойчивость к влаге. Грунтовка не боится воздействия воды, в том числе и соленой, так как устойчива к солям. Благодаря этому она надежно защищает кузов автомобиля от коррозии в зимний период, когда дороги посыпают солью;
  • Устойчивость к агрессивным средам. Кислотный грунт не боится воздействия масел, бензина, и многих других химических веществ;
  • Атмосферостойкость. Состав может защищать металл от воздействия окружающей среды даже без нанесения лакокрасочного материала;

Так выглядит обработанная кислотным грунтом поверхность

  • Прочность. Фосфорная кислота образует прочную, износостойкую пленку на поверхности металла. В результате она способна выдерживать достаточно большие механические нагрузки;
  • Высокая скорость высыхания. Наносить второй и последующие слои можно спустя 5 минут после нанесения первого слоя. Полное высыхания происходит через 30 минут после нанесения.

Правда, некоторые виды этих грунтовок могут высыхать до 12 часов, поэтому перед работой ознакомьтесь с информацией на упаковке.

Кислотный грунт относится к горючим и токсичным материалам. Поэтому при работе с ним необходимо соблюдать меры безопасности, а также избегать его попадание в глаза и на кожу.

Что касается недостатков материала, то о них я уже сказал выше – средство не может контактировать с лакокрасочными материалами и эпоксидными грунтами. Кроме того, нельзя на реактивный грунт класть шпаклевку. А вот поверх шпаклевки и лакокрасочного материала, где имеются участки его повреждения, наносить состав можно.

Поверх кислотной грунтовки лучше всего наносить двухкомпонентный акриловый грунт. Он хорошо ложится на поверхность, не вступает в реакцию с кислотой и обеспечивает надежный изоляционный слой между первичной грунтовкой и последующими отделочными материалами.

Двухкомпонентная грунтовка обеспечивает более надежную защиту металла от коррозии, чем однокомпонентная

В продаже встречаются следующие виды реактивных грунтовок:

  • Однокомпонентная грунтовка. Представляет собой полностью готовый к применению состав. К таким относится и аэрозоль, которую я упомянул выше;
  • Двухкомпонентная. Перед нанесением необходимо добавлять отвердитель. Он вступает в реакцию с пигментами и смолами, при этом выделяется тепло.

Надо сказать, что профессионалы предпочитают двухкомпонентные грунтовки, так как они образуют на поверхности более прочную и надежную пленку, защищающую металл от коррозии и атмосферных воздействий.

Кислотную грунтовку можно наносить не только на сталь, но и на алюминий

Область применения

Итак, для чего нужен кислотный грунт мы выяснили, но металлы бывают разные. Поэтому давайте разберемся на какие из них можно наносить данное средство. Итак, реактивным составом можно покрывать:

  • Железо;
  • Оцинкованную сталь;
  • Нержавеющую сталь;
  • Хромированные покрытия.

Также можно использовать жидкость для алюминия. Собственно, изначально этот материал и был разработан для грунтования алюминия.

В то же время запрещается наносить вош-праймер на полиэфирные поверхности.

На фото — качественная двухкомпонентная грунтовка Jeta Pro

Стоимость

Ниже приведены цены на некоторые составы, которые хорошо себя зарекомендовали на отечественном рынке:

МаркаЦена в рублях
BODY (аэрозоль) 0,4 л390
Jeta Pro (двухкомпонентный) 0,4 0,4 л570
Novol (двухкомпонентный) 1 л1 130
U-POL Грунт ACID 8 (аэрозоль) 450 мл725

Цены актуальны весной 2017 года.

Несколько слов о нанесении

Напоследок рассмотрим как работать с данным составом. Итак, процесс нанесения включает в себя три основных этапа:

Этапы обработки металла кислотной грунтовкой

Инструкция выглядит следующим образом:

ИллюстрацииОписание
Подготовка поверхности:
  • Если на поверхности имеются жировые пятна, их необходимо удалить. Если имеются следы коррозии, от них также необходимо избавиться, так как по ржавчине наносить состав нельзя;
  • При необходимости поверхность нужно отшлифовать абразивом Р120-Р240;
  • Подготовленную поверхность необходимо обезжирить.
Подготовка грунта:
  • Если состав двухкомпонентный, его необходимо смешать согласно инструкции на упаковке;
  • Если состав однокомпонентный, его надо просто взболтать.
Нанесение:
  • Состав наносится своими руками при помощи обычной кисти, валика или распылителя. В процессе нанесения нужно следить, чтобы жидкость ложилась тонким равномерным слоем;
  • После просыхания наносится второй слой. Всего обычно требуется 3 слоя;
  • После нанесения и высыхания третьего слоя поверхность нужно отшлифовать абразивом P400. В результате должно получиться ровное и гладкое покрытие.
  • По завершению шлифования можно нанести акриловый грунт.

Заниматься грунтованием следует при температуре не ниже 15 градусов. В противном случае время высыхания значительно увеличится. В некоторых случаях покрытие может полноценно не отвердеть.

На этом процесс грунтования завершен.

Вывод

Теперь вы знаете что представляет собой кислотный грунт, для чего он нужен и как им пользоваться. Дополнительно просмотрите видео в этой статье. Со всеми вопросами по озвученной теме обращайтесь ко мне в комментариях, и я с радостью вам отвечу.

Причины и последствия кислотности почвы

Опубликовано апр.2017 г. | Id: PSS-2239

От Хайлинь Чжан

Кислотность почвы — проблема растениеводства, вызывающая все большую озабоченность в центральных и восточных регионах Оклахома. Хотя кислые почвенные условия более распространены в восточной части Оклахомы, более естественное явление привело к тому, что операторы ферм могли лучше управлять кислотностью почвы в этой части штата.Однако в центральных и западных регионах Оклахома, похоже, проблема со временем нарастает. Этот информационный бюллетень объясняет, почему почвы становятся кислыми, и кислотные почвы создают проблемы для растениеводства. Расширение OSU Факты PSS-2229 объясняет, как кислотность почвы и потребность в извести определяются путем тестирования почвы. В последующем информационном бюллетене обсуждается управление почвами пшеничных угодий в Оклахоме (см. Расширение Факты ПСС-2240).

Почему почвы становятся более кислыми

Четыре основных причины, по которым почвы становятся кислыми, перечислены ниже:

  1. Осадки и выщелачивание
  2. Кислотный исходный материал
  3. Распад органических веществ
  4. Урожай высокоурожайных культур
  5. Нитрификация аммония

Вышеуказанные причины кислотности почвы легче понять, если учесть, что почва кислая, когда в ней много кислых катионов (произносится как «кошачий глаз»), такие как водород (H + ) и алюминий (Al 3+ ), присутствующие по сравнению с щелочными катионами, такими как кальций (Ca 2+ ), магний (Mg 2+ ), калий (K + ), и натрий (Na + ).

Осадки и выщелачивание

Чрезмерное количество осадков — эффективное средство для удаления основных катионов в течение длительного времени. период (тысячи лет). Например, в Оклахоме мы можем сделать вывод, что почвы естественно кислые, если количество осадков превышает 30 дюймов в год.Следовательно, почвы к востоку от I-35 обычно кислые, а к западу от I-35 — щелочные. Здесь очень много исключения из этого правила, в основном из-за пунктов 4 и 5, интенсивный урожай производство и внесение аммиачного азота. Осадки наиболее эффективно вызывают почва становится кислой, если через нее быстро проходит много воды. Песчаные почвы часто первыми становятся кислыми, потому что вода быстро просачивается, а песчаные почвы содержат лишь небольшой резервуар оснований (буферная емкость) из-за низкого содержания глины и органических содержание дела.Поскольку осадки влияют на развитие кислых почв очень медленно, может потребоваться сотни лет для того, чтобы новый исходный материал стал кислым при высоких осадки.

Основной материал

Из-за различий в химическом составе основных материалов почвы станут кислый через разное время.Таким образом, почвы, возникшие из гранитного материала вероятно, будут более кислыми, чем почвы, образованные из известковых сланцев или известняков.

Распад органических веществ

При разложении органических веществ образуется H + , отвечающий за кислотность. Углекислый газ (CO 2 ), образующийся при разложении органических веществ, вступает в реакцию с водой в почве с образованием слабого вещества. кислота называется угольной кислотой.Это та же самая кислота, которая образуется, когда CO 2 в атмосфере вступает в реакцию с дождем, естественным образом образуя кислотный дождь. Несколько органических кислот также образуются при разложении органических веществ, но они также являются слабыми кислотами. Как дождь, вклад разлагающихся органических веществ в развитие кислых почв обычно составляет очень малы, и только накопленные за многие годы эффекты могут когда-либо быть измеренным в поле.

Растениеводство

Уборка урожая влияет на повышение кислотности почвы, так как культуры поглощают известковидные элементы в качестве катионов для их питания. Когда собирают эти культуры и урожай убирается с поля, то часть основного материала отвечает для противодействия кислотности, создаваемой другими процессами, теряется, и чистый эффект повышенная кислотность почвы.Повышение урожайности приведет к увеличению количества основных удаляемый материал. Зерно содержит меньше основных материалов, чем листья или стебли. По этой причине кислотность почвы при непрерывном выпасе пшеницы будет развиваться быстрее, чем когда убирают только зерно. Высокопродуктивные корма, такие как бермудская трава или люцерна, может вызвать повышение кислотности почвы быстрее, чем при выращивании других культур.

В таблице 1 указано приблизительное количество известковидных элементов, удаленных из почвы. урожаем пшеницы 30 бушелей.Обратите внимание, что извести почти в четыре раза больше. удаляется в корм как зерно. Это объясняет, почему выпас пшеницы он станет кислым намного быстрее, чем когда производится только зерно. Использование 50 процентов Известь ECCE, потребуется около одной тонны каждые 10 лет для поддержания pH почвы, когда солома (или фураж) и зерно производятся ежегодно из расчета 30 бушелей на акр.

Азотирование

Часто обвиняют в использовании удобрений, особенно азотных. как причина кислотности почвы.Кислотность образуется, когда аммонийсодержащие материалы в почве превращаются в нитраты. Более аммиачные азотные удобрения Чем больше кислотность применяется, тем более кислой становится почва.

Таблица 1 . Основания, удаленные урожаем пшеницы 30 бушелей

Кальций Калий Магний Натрий Всего
фунтов ECCE Lime
Зерно 2 10 10 2 24
Солома * 11 45 14 9 79
Итого 13 55 24 11 103 **

* Солома / корм

** Одна тонна люцерны удалит немного больше, чем это количество.

Что происходит в кислых почвах

Знание pH почвы помогает определить виды химических реакций, которые вероятны. происходить в почве. Как правило, наиболее важные реакции со стороны с точки зрения растениеводства — это те, которые имеют дело с растворимостью соединений или материалы в почвах.В связи с этим нас больше всего беспокоит влияние pH. от наличия токсичных элементов и элементов питания.

Токсичные элементы, такие как алюминий и марганец, являются основными причинами неурожая в кислые почвы. Эти элементы представляют собой проблему в кислых почвах, потому что они более растворимы. при низком pH.Другими словами, большая часть твердых форм этих элементов растворится. в воде при низком pH (<5,5). В нем всегда много алюминия. почвы, потому что он входит в состав большинства частиц глины.

Токсичность элементов

Когда pH почвы выше 5.5, алюминий в почвах остается в твердой комбинации с другими элементами и не вреден для растений. Когда pH падает ниже 5,5, алюминий содержащие материалы начали растворяться. Поскольку он является катионом (Al 3+ ), количество растворенного алюминия в 1000 раз больше при pH 4,5, чем при 5,5, и В 1000 раз больше при 3,5, чем при 4,5. По этой причине может показаться, что некоторые культуры очень хорошо, но затем полностью потерпят неудачу при небольшом изменении pH почвы.Пшеница, для Например, может хорошо работать даже при pH 5,0, но обычно полностью не работает при pH 4,0.

Связь между pH и растворенным марганцем в почве аналогична соотношению только что описано для алюминия, за исключением того, что марганец (Mn 2+ ) увеличивается только в 100 раз, когда pH падает с 5,0 до 4,0.

Уровень токсичности алюминия наносит вред урожаю из-за «обрезки корней.”То есть небольшая сумма алюминия в почвенном растворе сверх нормы вызывает корни большинства растения либо портятся, либо перестают расти. В результате растения не могут нормально впитывать воду и питательные вещества, будет казаться чахлой и проявлять питательные вещества симптомы дефицита, особенно фосфора. Окончательный эффект либо завершен неурожай или значительная потеря урожая.Часто поле оказывается под большим стресс от вредителей, таких как сорняки, из-за плохого состояния урожая и его неспособность конкурировать.

Токсичные уровни марганца мешают нормальным процессам роста вышеперечисленных наземные части растений. Обычно это приводит к задержке роста, обесцвечиванию и плохой урожайности.

Желаемый pH

Неблагоприятное воздействие этих токсичных элементов наиболее легко (и экономично) устраняется. известкованием почвы. Известкование повышает pH почвы и вызывает образование алюминия и марганца. переходить из почвенного раствора обратно в твердые (нетоксичные) химические формы.Для трав, повышение pH до 5,5 обычно восстанавливает нормальные урожаи. Бобовые, с другой рука, лучше всего работать в среде, богатой кальцием, и часто требуется pH в диапазоне 6,5 до 7,0 для максимальной урожайности.

pH почвы в диапазоне от 6,0 до 7,0 также желателен с точки зрения оптимального доступность питательных веществ.Однако наиболее распространенный дефицит питательных веществ в Оклахоме предназначены для азота, фосфора и калия, и доступность этих элементов будет не сильно изменится известкованием. Питательные вещества, наиболее подверженные влиянию pH почвы, — это железо и молибден. Дефицит железа чаще встречается в щелочных (с высоким pH) почвах. Дефицит молибдена не является обычным явлением в Оклахоме, но чаще всего встречается в кислые почвы и могут быть исправлены известкованием.Молибден имеет решающее значение для фиксации азота бобовыми культурами.

Хайлинь Чжан

Директор

Аналитическая лаборатория почвы, воды и кормов

Была ли эта информация полезной?
ДА НЕТ

Кислотность почвы и Aglime

Резюме

  • pH почвы указывает на кислотный уровень почвы.Значение pH менее 7,0 указывает на кислую почву.
  • Подкисление почвы — это естественный процесс, который усиливается при нормальной производственной практике, особенно при использовании азотных удобрений и навоза.
  • Высокий уровень кислотности почвы (низкий pH почвы) может замедлить рост корней, снизить доступность питательных веществ, повлиять на активность защиты растений.
  • Для большинства сельскохозяйственных культур pH почвы должен быть от 6,0 до 7,0.
  • Тест почвы определяет pH почвы, который указывает, требуется ли известкование.
  • Тест почвы также показывает обменную кислотность почвы. Это вместе с оптимальным pH для роста сельскохозяйственных культур определяет, сколько известняка требуется для нейтрализации кислотности.
  • Большинство агломерированных материалов представляют собой карбонаты кальция и / или магния. Также используются негашеная известь, гашеная известь и некоторые побочные продукты. Сульфат кальция (гипс) и сульфат магния (английская соль) не вызывают известкования.
  • Качество извести основано на нейтрализующей способности, определяемой ее эквивалентом карбоната кальция (CCE), и скоростью реакции, определяемой ее крупностью.Также важны содержание кальция и магния и уровень влажности.
  • Согласно закону Пенсильвании информация о качестве извести должна быть на этикетке всех агломерированных материалов.
  • Рекомендации по извести для испытаний почвы обычно даются в виде количества CCE на акр. Фактическое количество материала, необходимое для выполнения рекомендаций, будет варьироваться в зависимости от фактического CCE, содержания влаги и глубины заделки.
  • Фактическая стоимость известкования сравнивается исходя из равной суммы CCE.
  • Известкование следует по возможности смешать с почвой.
  • Даже мелко измельченный известковый материал реагирует через несколько месяцев. Применяйте аглим заблаговременно перед выращиванием чувствительных к кислоте культур, чтобы дать время нейтрализовать кислотность почвы.

Рациональная программа известкования повысит продуктивность почвы и, что, возможно, более важно в нынешних условиях, повысит эффективность других факторов производства сельскохозяйственных культур, таких как удобрения и средства защиты растений.

Определение и причины кислотности почвы

Кислые почвы определяются как любая почва с pH менее 7.0 (нейтральный). Кислотность обусловлена ​​концентрацией ионов водорода (H + ) в почве. Чем выше концентрация H + , тем ниже pH. Также важно отметить, что изменение pH на одну единицу равняется десятикратному изменению кислотности, поэтому небольшие изменения pH могут резко повлиять на потребность этой почвы в извести. Кислотность почвы складывается из двух компонентов: активной кислотности и обменной (резервной) кислотности. Активная кислотность — это концентрация иона H + в растворе почвы, которая измеряется pH, но не является мерой общей кислотности почвы.PH почвы является общим показателем того, нужен ли аглим для снижения кислотности. Обменная кислотность относится к количеству ионов H + на участках катионообмена отрицательно заряженных фракций глины и органического вещества почвы. Обменная кислотность почвы определяет количество глимы, необходимое для повышения pH почвы. Таким образом, отчеты об испытаниях почвы показывают как pH почвы, так и обменную кислотность, а также рекомендации по извести, основанные на этой общей кислотности, а также на других факторах.

Первоначально каждый тип почвы имеет определенный уровень кислотности в зависимости от ее состава, местной растительности и количества осадков, однако различные факторы с течением времени вызывают изменения pH почвы.Выщелачивание, эрозия и поглощение растениями основных катионов (кальций, Ca 2+ ; магний, Mg 2+ ; калий, K + ), разложение растительных остатков и экссудаты корней растений — все это средства, с помощью которых кислотность почвы повышена. Однако общий источник кислотности — это ионы H + , которые высвобождаются, когда высокие уровни алюминия (Al3 + ) в почве вступают в реакцию с молекулами воды. Остатки кислоты также возникают из-за некоторых удобрений.

Источники азота, которые поставляют аммоний или реагируют в почве с образованием аммонийного азота (например,(например, нитрат аммония, мочевинные удобрения и навоз) образуют кислоту и повышают кислотность почвы. При протекании этих реакций необходимо нейтрализовать кислотность, добавив в почву известь. Приблизительные фунты карбоната кальция (CaCO 3 ), необходимые для нейтрализации подкисляющего действия одного фунта азота, следующие:

3 фунта для нитрата аммония (NH 4 NO 3 ), мочевины ( NH 2 -CO-NH 2 ), растворы азота / КАС (мочевина + NH 4 NO 3 + вода) и безводный аммоний (NH 3 )

5.3 фунта для диаммонийфосфата (DAP), [(NH 4 ) 2 HPO 4 ]

7 фунтов для сульфата аммония [(NH 4 ) 2 SO 4 ], моноаммонийфосфат (MAP), [NH 4 H 2 PO 4 ] и полифосфат аммония (APP)

Влияние кислотности почвы на растениеводство

Для большинства сельскохозяйственных культур pH почвы составляет От 6,0 до 7,0 идеально подходит для выращивания сельскохозяйственных культур, однако диапазон допустимости pH для различных видов сельскохозяйственных культур может варьироваться (Рисунок 1).Например, бобовые культуры и ячмень лучше реагируют на диапазон pH от 6,5 до 7,0, тогда как овес может переносить pH 5,5.

Рис. 1. Благоприятные диапазоны pH для обычных культур.

Однако известкование почвы для поддержания оптимального pH улучшает урожайность в долгосрочной перспективе. Например, многолетние бобовые культуры будут давать более высокие урожаи и долголетие. Также необходимо учитывать другие факторы управления, такие как влияние pH почвы на гербициды. PH почвы ниже 6.0 вызывает снижение активности триазиновых гербицидов, тогда как pH более 7,0 может вызывать проблемы уноса с другими типами гербицидов. Хотя известкование обеспечивает некоторую питательную ценность для растений (Ca 2+ или Mg 2+ ), его наибольшая польза для роста растений заключается в противодействии негативным эффектам кислотности почвы, которые могут вызвать некоторые из следующих проблем.

Токсичность растворимых металлов

При снижении pH ниже 5,5 доступность алюминия и марганца (Mn) увеличивается и может достигать точки токсичности для растений.Избыток Al 3+ в почвенном растворе мешает росту и функционированию корней, а также ограничивает усвоение растениями определенных питательных веществ, а именно Ca 2+ и Mg 2+ . Известкование кислых почв снижает активность Al и Mn.

Влияние на доступность фосфора

Кислые почвы заставляют P образовывать нерастворимые соединения с алюминием и железом. Известкование почв с низким pH «растворяет» эти нерастворимые соединения и позволяет P быть более доступным для усвоения растениями. Однако известкование почвы выше 7 баллов.0 заставляет P образовывать комплексы с Ca или Mg, поэтому лучше поддерживать pH почвы между 5,5 и 6,8, чтобы обуздать эти проблемы (см. Рисунок 2).

Рисунок 2. Как pH почвы влияет на доступность питательных веществ для растений и алюминия.

Доступность микроэлементов

Доступность микроэлементов увеличивается по мере снижения pH почвы, за исключением молибдена. Поскольку микронутриенты необходимы растениям в незначительных количествах, токсичность для растений в дополнение к другим пагубным последствиям проявляется в избыточных количествах.Обратитесь к Рисунку 2, где показано соотношение между pH и доступностью питательных веществ.

Почвенные организмы

Микроорганизмы, связанные с нитрификацией (преобразование NH 4 + в NO 3 ), требуют определенного диапазона pH почвы для эффективного функционирования. Поскольку этим организмам требуется большое количество Ca для осуществления преобразования, для того, чтобы Ca был доступен, необходим pH от 5,5 до 6,5. Кроме того, активность бактерий ( видов Rhizobia, ), которые отвечают за фиксацию азота в бобовых культурах, снижается, когда pH падает ниже 6.0. Помимо того, что организмы производят меньше азота для использования сельскохозяйственных культур, кислые почвы также влияют на микробы, ответственные за разложение пожнивных остатков и органического вещества почвы. Другие микроорганизмы различаются по устойчивости к pH почвы.

Физическое состояние почвы

Известкование мелкозернистых почв улучшает структуру и имеет несколько положительных качеств, включая уменьшение образования корки на почве, лучшее всхожесть мелкосемянных культур и меньшую мощность, необходимую для обработки почвы.

Болезнь

Кислотность почвы может оказывать влияние на некоторые патогены растений (болезнетворные организмы). Однако болезнетворные микроорганизмы различаются по своей устойчивости к кислотности почвы, поэтому рекомендовать какой-либо диапазон pH почвы нельзя. Следовательно, перед применением какой-либо тактики управления необходимо надлежащее определение проблемы.

Отбор проб почвы

Тест почвы, проведенный надежной лабораторией, дает хорошую оценку состояния плодородия поля. Правильный отбор проб почвы является важным первым шагом в процессе тестирования и должен выполняться в соответствии с инструкциями, прилагаемыми к комплекту для отбора проб.Однако методы отбора проб для нулевой обработки почвы различаются. Если на участке выращивалась кукуруза с нулевой обработкой почвы в течение двух или более лет, рекомендуется измерить pH поверхности почвы. Поскольку поверхностное внесение азотных удобрений и навоза может подкислять верхний слой почвы, снижая эффективность гербицидов и другие химические реакции, необходим анализ кислотности в пределах двух верхних дюймов почвы. Соберите несколько репрезентативных кернов глубиной менее двух дюймов из зоны нулевой обработки почвы и тщательно перемешайте в чистом ведре.Удалите образец и измерьте кислотность с помощью простого точного колориметрического полевого набора pH. Если pH поверхностного слоя почвы меньше 6,2, возьмите стандартный образец почвы для лабораторного анализа. Если стандартный образец не указывает на необходимость в известняке, а pH поверхности ниже 6,2, нанесите 2000 фунтов материала, эквивалентного карбонату кальция. Этого количества аглима должно быть достаточно для нейтрализации кислотности поверхности.

Aglime

Хорошая программа известкования основана на тесте почвы, который определяет степень кислотности почвы и правильное количество материала для известкования, необходимого для нейтрализации этой кислотности.Как только это количество определено, необходимо выбрать материал для известкования, который будет экономически удовлетворять рекомендациям по тестированию почвы и приведет к максимальному и эффективному производству. Тем не менее, прежде чем рассматривать необходимое количество внесения извести, полезно понять, что такое аглоцемент, качество и соответствующие законы.

Аглим

Аглим — это известкование в сельском хозяйстве, способное нейтрализовать кислотность почвы, то есть повысить ее pH. Общие аглимовые материалы и некоторые из их важных химических свойств приведены в таблице 1.Безусловно, наиболее распространенными аглимами, используемыми в Пенсильвании (приблизительно 99 процентов), являются измельченный кальцитовый и доломитовый известняк. Хотя в процессе известкования они поставляют необходимый кальций и магний, именно карбонатная, оксидная или гидроксидная часть этих соединений нейтрализует кислотность почвы. Такие материалы, как сульфат кальция (гипс) или сульфат магния (английская соль) не являются известковыми материалами, даже если они содержат кальций и магний, поскольку они не способны нейтрализовать кислотность почвы.

5 CaSiO 3
Таблица 1. Общие аглим.
Материал Химическая формула% CCE
Чистый кальцитовый известняк CaCO 3 100
Доломитовый известняк 10 CO, Mg15 900 109
оксид кальция; известь негашеная, кусковая или негашеная, известь негашеная CaO 179
Гидроксид кальция; гидратированная, гашеная или строительная известь Ca (OH) 2 136
Мергель и ракушка CaCO 3 70-90
Шлак (различные) 60-90
Побочные продукты промышленного производства варьируются варьируются

Качество агликемии

Не все известняки одинаковы.Качество аглиме значительно различается и должно быть важным фактором при управлении аглимой. Четыре фактора являются наиболее важными при оценке качества аглимы; химическая чистота, скорость реакции, содержание магния и влаги.

1. Химическая чистота

Химическая чистота аглима определяет степень кислотности почвы, которую материал может нейтрализовать. Химическая чистота указывается в эквиваленте карбоната кальция (CCE) материала: кислотность почвы, которую материал может нейтрализовать, по сравнению с чистым карбонатом кальция (кальцитовый известняк, CaCO3).CCE дан в процентах: известняк со 100-процентным содержанием CCE будет так же эффективен, как чистый кальцитовый известняк по нейтрализующей способности; Известняк с концентрацией CCE на 90 процентов будет эффективнее всего на 90 процентов; и известняк с содержанием CCE 109 процентов, такой как доломитовый известняк, будет на 109 процентов более эффективным. Эквивалент карбоната кальция дан для каждого из материалов, перечисленных в таблице 1. Эквивалент карбоната кальция указывает только эквивалентное значение нейтрализации аглимового материала; это ничего не говорит о фактическом содержании карбоната кальция в материале.Например, обратите внимание, что чистый гидроксид кальция (гашеная или гашеная известь) имеет CCE 136 процентов, но не содержит карбоната кальция.

Значение CCE известняка получается непосредственно путем растворения образца материала в кислоте. Однако об анализе аглимы часто сообщают по-разному, например, по оксиду кальция (CaO) и оксиду магния (MgO) или в виде карбоната кальция (CaCO 3 ) и карбоната магния (MgCO 3 ). Вы можете легко рассчитать значение CCE аглимового материала, указанное этими способами, используя коэффициенты пересчета, перечисленные в таблице 2.Преобразуйте анализы в карбонат кальция и затем сложите их.

Таблица 2. Коэффициенты пересчета для известковых материалов.
Ca x 2,50 = CaCO 3
Mg x 4,17 = CaCO 3
CaO x 1,79 = CaCO 3
MgO x 2,50 = CaCO8 310
MgCO 3 x 1,19 = CaCO 3
Ca (OH) 2 x 1.36 = CaCO 3
Пример:
Ca 35% x 2,50 = 87,50%
Mg 2% x 4,17 = 8,34%
CCE = 95,84%
01

Известковые материалы, содержащие менее 50 процентов CCE, в основном состоят из компонентов, которые не способствуют нейтрализующей способности материала. По сравнению с аглимом с более высоким процентным значением CCE, для снижения кислотности почвы потребуются большие количества.Химическая чистота известняка зависит от геологической формации, в которой материал добывается или добывается, и может значительно варьироваться от карьера к карьере или даже в пределах одного карьера. Это изменение — проблема, с которой производители должны столкнуться, чтобы гарантировать качество агламы.

2. Скорость реакции

Скорость, с которой аглим реагирует с почвой, нейтрализуя кислотность и тем самым повышая pH почвы, определяется тонкостью материала. Чем мельче материал, тем быстрее он будет реагировать, потому что растворимость известняка увеличивается по мере его измельчения.Кроме того, известняк влияет только на очень небольшой объем почвы вокруг каждой частицы, поэтому чем мельче материал, тем больше общая площадь поверхности, которая может контактировать с почвой и нейтрализовать ее (при условии надлежащего перемешивания почвы). Аглим должен как можно быстрее вступить в реакцию с почвой. Как правило, аглим должен полностью отреагировать в течение трех лет. Более быстрая реакция может быть желательной на арендованной земле или для однолетних культур с более коротким сезоном.

Тонкость извести выражается в процентах материала, прошедшего через сита с заданной ячейкой.Сито сита — это количество проволок на дюйм на сите. Чем выше число, тем более тонкий материал будет проходить.

Аглим размером более 20 меш (с размером частиц поваренная соль / сахар) реагирует очень медленно; мало что отреагирует в течение двух-трех лет. Скорость реакции увеличивается до практического максимума с материалом 100 меш. Влияние дисперсности аглима на скорость реакции четко показано на рисунке 3.

Рисунок 3. Влияние дисперсности аглима на скорость реакции.

В каждом случае, показанном на Рисунке 3, наносили достаточное количество аглима для нейтрализации кислотности почвы и повышения pH почвы до 7,0. Однако только материал с размером ячеек 100 меш приблизился к достижению этой цели. Поэтому было бы желательно использовать только аглим с размером ячеек 100 меш или меньше. Однако это решение должно быть сбалансировано с учетом высокой стоимости измельчения известняка до более мелкого размера, чем 100 меш. Должен быть достигнут компромисс, чтобы материал был достаточно мелким, чтобы быть эффективным с агрономической точки зрения, но при этом экономичным.Как правило, достаточно материала, по меньшей мере 95 процентов которого проходят через сито 20 меш, 60 процентов проходят через сито 60 меш и 50 процентов проходят через сито 100 меш. Дополнительные расходы на известкование более мелкого размера рекомендуется только в экстренных ситуациях, когда требуется очень быстрая реакция.

3. Содержание кальция и магния

Известь не только нейтрализует кислоту, но и служит источником кальция и магния. Содержание магния в аглиме важно, когда анализ почвы указывает на потребность в магнии.Потребности в магнии наиболее экономично удовлетворяются за счет применения аглим, содержащего магний.

Содержание магния в аглиме значительно варьируется. К сожалению, официальной торговой классификации известняка по содержанию магния не существует. Схемы местной классификации часто создают путаницу. Следовательно, чтобы выбрать подходящий аглим, вы должны использовать фактический анализ содержания магния, а не название (например, доломитовая известь, высокомагниевая известь).

Рекомендации по тестированию почвы на содержание магния обычно даются одним из трех различных способов: в фунтах Mg на акр, или в фунтах MgO на акр, или в фунтах эквивалента карбоната кальция на акр с определенным содержанием Mg или MgO.Материалы для известкования должны иметь маркировку с указанием процентного содержания Mg; однако также может появиться дополнительная информация о процентном содержании MgO. Когда рекомендация и метка имеют разные формы, требуется простое преобразование. Чтобы преобразовать Mg в MgO, умножьте на 1,67; но чтобы преобразовать MgO в Mg, умножьте на 0,602.

4. Влага

Содержание влаги в аглиме не влияет напрямую на его эффективность. Однако, поскольку известь продается и применяется по весу, включая вес воды, высокое содержание влаги означает меньшее количество фактического известкового материала на тонну.Когда влажность приближается к 10 процентам или более, необходимо отрегулировать норму внесения аглима на акр, чтобы обеспечить внесение в почву необходимого количества фактического известкования. Используйте следующую формулу для корректировки или обратитесь к разделу примеров расчетов:

Закон Пенсильвании о извести

Качество аглиме, продаваемой в Пенсильвании, регулируется законодательством штата, Правилами и положениями о сельскохозяйственных известковых материалах. Поскольку качество агломерата невозможно определить визуальным осмотром, эти правила помогают убедить фермеров (потребителей) в том, что они получают то, за что платят.Недавно государственные правила по извести были изменены, чтобы требования соответствовали законам во всем северо-восточном регионе США. Эти новые требования к маркировке вступят в силу в полном объеме к сентябрю 1995 г. Следующая информация представляет собой краткое изложение новых Правил и положений о сельскохозяйственных известковых материалах.

1. Типы

Аглимовые материалы должны иметь маркировку в соответствии с их типом (например, известняк, гашеная известь, негашеная известь, промышленные побочные продукты или мергель и скорлупа).

2. Элементный кальций и магний

Материалы Aglime должны иметь маркировку с указанием общего содержания кальция (Ca) и общего магния (Mg) в процентах по массе, содержащихся в продукте. Гарантии на оксиды и карбонаты могут быть указаны после элементарной гарантии.

3. Тонкость помола

На этикетке должна быть указана классификация (мелкий, средний или крупный) продукта и минимальное процентное содержание по весу в соответствии со стандартами США 20, 60 и 100. сетчатое сито.Классификация должна соответствовать минимальным стандартам, установленным нормативными актами. (некоторые специальные известняковые материалы для газонов и садов имеют разные стандарты качества). Ниже представлены три группы в зависимости от степени измельчения агрономических материалов для известкования:

Мелкодисперсные материалы
95% через сито с размером ячеек 20 меш
60% через сито с размером ячеек 60 меш
50% через сито 100 меш

Материалы среднего размера
90% через сито 20 меш
50% через сито 60 меш
30% через сито 100 меш

Крупнозернистые материалы Все известковые материалы, которые не соответствуют одному из вышеуказанных минимумов тонкости помола.

4. Эквивалент карбоната кальция (CCE)

На этикетке должно быть указано минимальное значение CCE для аглима.

5. Эффективное значение нейтрализации (ENV)

На этикетке должно быть указано минимальное значение ENV для аглимата. [ENV — это относительное значение, которое выражает способность известкования нейтрализовать кислотность почвы и определяется с использованием содержания и крупности оксидов кальция и магния. ENV не используется в Пенсильвании, но используется в некоторых других штатах региона.Термин похож на «эффективная нейтрализующая сила» (ENP)].

6. Влажность

На этикетке должно быть указано максимальное содержание влаги по весу материала. Допуск в размере 10 процентов гарантии установлен для влажности выше указанной на этикетке.

7. Анализ сухого веса

Гарантии для элементарного Ca и Mg, CCE и ENV должны быть указаны на этикетке под заголовком: «Гарантированный анализ сухого веса». Если оксиды и карбонаты гарантированы, они должны соблюдать элементарную гарантию.

8. Допуски

Допуск в размере 2 процентов гарантии допускается для гарантированного минимального значения CCE и минимального значения дисперсности. Для всех других гарантий допускается 10-процентный диапазон допуска.

Рекомендации по тестированию почвы на содержание извести

Ограничение кислой почвы до оптимального диапазона является первым шагом в создании благоприятных почвенных условий для роста продуктивных растений. Рекомендации по извести в отчете об испытаниях почвы основаны на количестве обменной кислотности (или обменного H +), измеренной в результате испытания почвы на потребность в извести, и оптимальном pH почвы для сельскохозяйственных культур.Для желаемого pH 7,0 потребность в извести можно оценить следующим образом:

Потребность в извести = обменная кислотность x 1000

Для желаемого pH 6,5 потребность в извести оценивается следующим образом:

Если обменная кислотность больше 4,0, тогда:
Потребность в извести = обменная кислотность x 840

Если обменная кислотность меньше 4,0, а pH почвы все еще меньше 6,5, тогда:
Потребность в извести = 2000 фунтов / A

В противном случае известь не требуется.

Рекомендации по тестированию почвы должны учитывать, что качество агломерата значительно различается. Большинство рекомендаций по тестированию почвы на аглим основаны на способности нейтрализации кислоты, эквивалентной 100% -ному эквиваленту карбоната кальция, а также на известковании среза акра-борозды глубиной примерно семь дюймов. Рекомендации по аглиме штата Пенсильвания выражаются в фунтах эквивалента карбоната кальция на акр. Таким образом, вы должны скорректировать рекомендацию при использовании аглим с CCE, отличным от 100-процентного CCE.Следующая формула используется для расчета скорректированного количества аглим, необходимого для соответствия рекомендациям по тестированию почвы:

Подробный пример см. В разделе «Примеры расчетов».

Эту скорректированную рекомендацию можно рассчитать по этой формуле или прочитать непосредственно из таблицы 3. Лаборатория сельскохозяйственных аналитических служб штата Пенсильвания включает копию этой формулы и таблицы как часть рекомендаций к каждому тесту почвы.

Таблица 3.Конверсия известкования.

Найдите рекомендации по тестированию почвы на известняк в левом столбце, а затем просматривайте таблицу в этой строке, пока не дойдете до столбца, озаглавленного процентным содержанием CCE, ближайшим к процентному содержанию CCE в вашем известковании. Число в этой точке — это фунты известкования, необходимые для выполнения рекомендаций по известняку при испытании почвы.

Поскольку, как правило, мало преимуществ от внесения более 8000 фунтов CCE на акр в одном применении на сельскохозяйственных угодьях, эта таблица разделена на три раздела, в которых предлагается, как можно разделить весь требуемый материал для известкования для более эффективного использования.Разделите заявки по шести месяцам или, по крайней мере, по обработке почвы (см. Правый столбец). При нулевой обработке почвы рекомендуемый аглим может применяться более мелкими частями.

Рекомендации по испытаниям почвы предполагают, что агламинирующий материал соответствует минимальным стандартным требованиям для мелкозернистых известковистых материалов, установленным законом о извести.

Если аглим будет заделан большим объемом почвы (например, если глубина плуга больше девяти дюймов), рекомендация корректируется в соответствии со следующей формулой:

или можно использовать рекомендации, которые следующие:

Глубина плуга Скорректированная потребность в агломерате
Менее 9 дюймов Без регулировки
От 9 до 11 дюймов Основное требование x 1.5
Более 12 дюймов Основное требование x 1,8

Пример расчетов для корректировки аглимовых материалов

  • Рекомендация по испытанию почвы:
    Известняк — нанесите 6000 фунтов эквивалента карбоната кальция на акр.
  • Известная информация:
    Эквивалент аглима карбоната кальция = 90%
    Содержание влаги в аглиме = 15%
    Включает в себя 10 дюймов
  • Регулировка материала до рекомендуемого процента от CCE Пример:

  • Пример регулировки влажности:

  • Корректировка для заделки с большим объемом почвы Пример:

В этом примере после внесения всех корректировок для нейтрализации кислотности почвы потребуется 11 300 фунтов на акр.Поскольку требуется большое количество, было бы лучше использовать сплит-внесение в два разных периода времени с интервалом примерно в шесть месяцев или путем обработки почвы. Небольшие, более частые обработки подходят для ситуаций с нулевой обработкой почвы. Обратите внимание на то, что введение извести на глубину более семи дюймов приводит к увеличению более чем в 1,5 раза первоначальной потребности в извести. Поэтому убедитесь, что ваша глубина плуга точна, и что не произойдет чрезмерного нанесения аглима.

Примеры расчетов для сравнения аглимовых материалов

Для сравнения аглимовых материалов пересчитайте материалы в «на тонну CCE», а затем сравните общую стоимость на тонну CCE.Имейте в виду, что материал должен соответствовать минимальным требованиям по тонкости. Пока эти минимумы соблюдены, тонкость не будет иметь большого значения, за исключением чрезвычайных ситуаций, требующих чрезвычайно быстрой реакции. Ниже приведен пример сравнения трех материалов для известкования:

В этом примере лучше всего купить материал B.

Подготовлено Дугласом Б. Биглом, профессором агрономии, и Дуайтом Д. Лингенфельтером, помощником по расширению.

pH почвы — управление питательными веществами

Кислотность почвы

Кислота определяется как вещество, которое имеет тенденцию выделять ионы водорода (H⁺).И наоборот, основание определяется как вещество, высвобождающее ионы гидроксила (ОН⁻). Все кислоты содержат ионы водорода, и сила кислоты зависит от степени ионизации (высвобождения ионов водорода) кислоты. Чем больше ионов водорода удерживается обменным комплексом почвы по отношению к основным ионам (Ca, Mg , K), тем выше кислотность почвы.

ПРИМЕЧАНИЕ. Алюминий (Al) также влияет на кислотность почвы, но для простоты дальнейшее обсуждение кислотности почвы будет ограничено H как причиной кислотности почвы.

Источник: IPNI

Желаемая почва

pH для оптимального растениеводства pH Диапазон

Желательный диапазон pH для оптимального роста растений варьируется для разных культур. В то время как некоторые культуры лучше всего растут в диапазоне от 6,0 до 7,0, другие хорошо растут в слабокислых условиях. Свойства почвы, влияющие на потребность в извести и реакцию на нее, различаются в зависимости от региона. Знание почвы и урожая важно для управления почвой pH для получения наилучших урожаев.

Почвы становятся кислыми, когда основные элементы, такие как кальций, магний, натрий и калий, удерживаемые коллоидами почвы, заменяются ионами водорода. Почвы, образовавшиеся в условиях большого годового количества осадков, более кислые, чем почвы, сформированные в более засушливых условиях. Таким образом, большинство почв юго-востока по своей природе более кислые, чем почвы Среднего Запада и Дальнего Запада.

Почвы, образовавшиеся в условиях малого количества осадков, имеют тенденцию быть щелочными с показателем pH почвы около 7,0. Интенсивное земледелие с использованием азотных удобрений или навоза в течение нескольких лет может привести к закислению почвы.Например, в районах выращивания пшеницы в Канзасе и Оклахоме, где pH почвы составляет 5,0 и ниже, в последние годы были задокументированы токсичность алюминия для пшеницы и хорошая реакция на известкование.

Факторы, влияющие на кислотность почвы

Осадки

Осадки влияют на кислотность почвы. Вода (H₂O) соединяется с диоксидом углерода (CO₂) с образованием слабой кислоты — угольной кислоты (H₂CO₃). Слабая кислота ионизирует, выделяя водород (H⁺) и бикарбонат (HCO₃). Освободившиеся ионы водорода заменяют ионы кальция, удерживаемые коллоидами почвы, в результате чего почва становится кислой.Вытесненные ионы кальция (Ca⁺⁺) соединяются с ионами бикарбоната с образованием бикарбоната кальция, который, будучи растворимым, вымывается из почвы. Чистый эффект — повышенная кислотность почвы.

Азотные удобрения

Уровни азота влияют на почву pH . Источники азота — удобрения, навоз, бобовые — содержат или образуют аммоний. Это увеличивает кислотность почвы, если растение напрямую не поглощает ионы аммония. Чем выше норма внесения азотных удобрений, тем сильнее закисление почвы.Когда аммоний превращается в нитрат в почве (нитрификация), высвобождаются ионы H. На каждый фунт азота в виде аммония требуется примерно 1,8 фунта чистого карбоната кальция для нейтрализации остаточной кислотности. Кроме того, полученный или сформированный нитрат может соединяться с основными катионами, такими как кальций, магний и калий, и выщелачиваться из верхнего слоя почвы в подпочву. Поскольку эти основания удаляются и заменяются ионами H, почвы становятся более кислыми.

Растения

Бобовые, такие как соя, люцерна и клевер, как правило, поглощают больше катионов по сравнению с анионами.Это вызывает высвобождение ионов H из корней растений для поддержания электрохимического баланса в их тканях. Результат — чистое закисление почвы.

Кислотность грунта

Даже если на верхних 6 дюймах почвы значение pH выше 6,0, то грунт может быть чрезвычайно кислым. Когда уровень pH в недрах почвы опускается ниже 5,0, алюминий и марганец в почве становятся более растворимыми, а в некоторых почвах могут быть токсичными для роста растений. Хлопок и, в некоторой степени, соевые бобы являются примерами культур, которые чувствительны к уровням высокорастворимого алюминия в подпочвах, и урожайность сельскохозяйственных культур может снизиться в условиях низкого уровня pH подпочвенного слоя.Если вы заметили на своем поле участки с низкорослыми растениями, возьмите пробу подпочвы на этих участках. Если почва pH чрезвычайно кислая (ниже 5,2), известь следует вносить рано осенью и как можно глубже окучивать.

Известкование почвы окупается

Коррекция кислотности почвы с помощью извести является основой хорошей программы плодородия почвы. Известь не только корректирует кислотность почвы. Он также:

  • Обеспечивает необходимые питательные вещества для растений, Са и Mg , если используется доломитовая известь

  • Делает другие важные питательные вещества более доступными

  • Предотвращает токсичность таких элементов, как Mn и Al, для роста растений .

Известковые материалы

Известковые материалы содержат кальций и / или магний в формах, которые при растворении нейтрализуют кислотность почвы. Не все материалы, содержащие кальций и магний, способны снижать кислотность почвы. Например, гипс (CaSO₄) содержит в заметных количествах Ca, но не снижает кислотность почвы. Поскольку он гидролизуется в почве, гипс превращается в сильное основание и сильную кислоту, как показано в следующем уравнении:

CaSO₄ + 2H₂O = Ca (OH) ² + H₂SO₄

Образующиеся Ca (OH) ² и H₂SO₄ нейтрализуют каждый другое, что приводит к нейтральному эффекту почвы.С другой стороны, когда в почву добавляется кальцитовая (CaCO₃) или доломитовая известь (Ca Mg (CO₃) ²), она гидролизуется (растворяется в воде) до сильного основания и слабой кислоты.

CaCO3 + 2H₂O = Ca (OH) ² + H₂CO₃

Гидроксид кальция является сильным основанием и быстро ионизируется до ионов Ca⁺⁺ и OH⁻. Ионы кальция заменяют поглощенные ионы H на коллоиде почвы и тем самым нейтрализуют кислотность почвы. Образовавшаяся угольная кислота (H₂CO₃) является слабой кислотой и частично ионизируется до ионов H⁺ и CO₂⁻².Таким образом, чистый эффект заключается в том, что в почву выделяется больше ионов водорода, чем H, и, следовательно, кислотность почвы нейтрализуется.

Известняк кальцитовый

Молотый известняк содержит в основном карбонат кальция и, как правило, от 1 до 6 процентов магния. Его нейтрализующая способность зависит от чистоты и тонкости помола.

Доломитовый известняк

Молотый известняк представляет собой смесь карбоната кальция и карбоната магния. В некоторых штатах она должна содержать не менее 6 процентов Mg , чтобы ее можно было классифицировать как доломитовую известь.Его нейтрализующий эффект также зависит от его чистоты и тонкости помола.

Гидратированная известь

Гашеная известь (Ca (OH) ²) — это гидроксид кальция, иногда называемый гашеной или строительной известью. Гашеная известь порошкообразная, быстро действует и несколько неприятна в обращении. Значение нейтрализации колеблется от 120 до 135 по сравнению с чистым карбонатом кальция. 1500 фунтов гашеной извести с нейтрализующей силой 135 эквивалентны 2000 фунтов сельскохозяйственной извести с нейтрализующей силой 100.

Мергели

Мергели — это месторождения карбоната кальция, смешанного с глиной и песком, которые встречаются в основном в прибрежной равнине восточных штатов. Их нейтрализующее значение обычно составляет от 70 до 90 процентов, в зависимости от количества содержащихся в них примесей, в основном глины. Их полезность в качестве известкования зависит от их нейтрализующей способности и стоимости обработки. Они часто бывают пластичными и комковатыми, и перед внесением в почву их необходимо высушить и измельчить.В мергелях обычно мало магния. Их реакция с почвой такая же, как у кальцитовой извести.

Основной шлак

Основной шлак — продукт основного мартеновского способа производства стали. Содержащийся кальций находится в форме силиката кальция и реагирует с кислотами почвы так же, как измельченный известняк. Его нейтрализующее значение колеблется от 60 до 70, но поскольку основной шлак обычно имеет более мелкие частицы, чем сельскохозяйственная известь, он имеет тенденцию изменять pH почвы на быстрее, чем обычная сельскохозяйственная известь.Он также содержит от 2 до 6 процентов P₂O₅ и некоторые питательные микроэлементы и магний.

Молотые раковины устриц

Раковины устриц и другие ракушки в основном состоят из карбоната кальция. При тонком измельчении из них получается удовлетворительный известковый материал, а их нейтрализующая способность составляет от 90 до 110. Поскольку они состоят в основном из карбоната кальция, они содержат мало или совсем не содержат магния.

Жидкая известь

Известковый материал, обычно называемый жидкой известью, обычно состоит из тонкоизмельченного известняка, взвешенного в воде в соотношении примерно 50% воды к 50% известняка.В большинстве случаев производители жидкой извести используют очень мелко измельченный известняк, большая часть которого проходит через сито с размером ячеек 200 меш. Жидкая известь способна изменить pH почвы за относительно короткий период времени. Это явное преимущество в ситуациях, когда известкование было отложено непосредственно перед посадкой, или в ситуациях, когда низкий уровень pH почвы обнаруживается после посадки культуры. Имейте в виду, поскольку жидкая известь содержит примерно 50 процентов воды, это означает, что фермер, применяющий жидкую известь из расчета 1000 фунтов на акр, будет вносить только 500 фунтов известняка.

Гранулированная известь

Гранулированная известь — это мелкоизмельченный сельскохозяйственный известняк, который гранулируется с помощью глины или синтетических связующих для производства гранул размером от 5 до 14 меш. Обычно около 70 процентов исходного известняка перед гранулированием проходит через сита от 100 до 200 меш. Его можно вносить обычными спинорными разбрасывателями удобрений, что делает его привлекательным в использовании. Неопубликованные исследования показывают, что гранулированной извести необходимо дать возможность вступить в реакцию с хорошими осадками или орошением на поверхности почвы, чтобы гранулы рассеялись, прежде чем они будут смешаны с почвой.Если от 250 до 500 фунтов этого известковательного материала смешать с почвой до того, как гранула «растает», каждая гранула может повлиять на ограниченный объем почвы, и желаемое регулирование pH пахотного слоя может не быть достигнуто.

Использование жидкой извести и гранулированной извести

Жидкая и гранулированная известь являются отличными источниками извести, которые можно использовать при определенных обстоятельствах, таких как: Исправление низкого уровня почвы pH после посадки урожая; Быстрое изменение в почве pH , если известкование откладывается непосредственно перед посадкой урожая; Для поддержания pH в оптимальном диапазоне для роста и урожайности растений.Однако не следует полагаться на эти два материала для известкования, чтобы поддерживать уровень pH почвы в течение всего вегетационного периода, если они вносятся с одной четвертой рекомендуемой нормы извести.

Тонкость помола важна при выборе материалов для известкования

Качество извести измеряется тем, насколько эффективно она нейтрализует кислотность почвы. Во многом это определяется его химической чистотой и размером частиц. Чистота извести выражается в эквиваленте карбоната кальция (CCE). Это мера того, какая часть материала может реагировать с почвой для нейтрализации кислотности в идеальных условиях по сравнению с чистым карбонатом кальция.Известняк должен иметь нейтрализующее значение не менее 90 процентов. Даже если CCE извести является удовлетворительным, она не нейтрализует кислотность почвы, если известняк не будет тонко измельчен. Пытаясь получить более точную оценку содержания извести для измерения эффективности известкования материалов, лаборатории по тестированию почвы в некоторых штатах приняли эффективное содержание карбоната кальция для оценки материалов извести. Оценка эффективности достигается путем умножения эквивалента карбоната кальция на эффективное содержание карбоната кальция, которое основывается на крупности известкования.

Коэффициенты эффективности для известковых материалов

Следующий пример расчета «эффективного нейтрализующего значения» (ENV), используемый Университетом Иллинойса, служит для иллюстрации важности размера частиц извести в потенциальной нейтрализации кислотности почвы. ENV = Общая тонкость помола x (% эквивалента карбоната кальция / 100).

Предположим, что известкование имеет 96-процентный эквивалент карбоната кальция. После просеивания обнаружено, что известковый материал имеет следующий гранулометрический состав:

+8 меш = 4%
от –8 до +30 = 25%
от –30 до +60 меш = 26%
–60 меш = 45%

Общий коэффициент полезного действия тонкости может быть рассчитан для данного примера материала следующим образом:

+ эффективность 8 ячеек составляет 5%, поэтому.04 x 5 = 0,20
Эффективность сетки от –8 до 30 составляет 20%, поэтому 0,25 x 20 = 5,00
Эффективность сетки от –30 до +60 составляет 50%, поэтому 0,26 x 50 = 13,00
— Эффективность 60 меш составляет 100%, поэтому 0,45 x 100 = 45,00

——————————— —————————————

Общая тонкость очистки за 1 год = 63,20

Следовательно, эффективное содержание карбоната кальция в ENV = 63,20 x (96/100) = 60.67 для этого примера известкования за первый год.

Эти расчеты позволяют производителю определить краткосрочную и долгосрочную ценность материала для известкования, рассматриваемого для покупки.

Большинство среднеатлантических и юго-восточных штатов используют раствор Mehlich I (двойная кислота) для извлечения P, K, Ca, Mg, , Mn и Zn. Большинство штатов Среднего Запада используют раствор Bray I для извлечения P. Для K, Mg, и Ca используется ацетат аммония. В регионах с известковыми почвами, таких как западная часть кукурузного пояса и Великие равнины, тест Олсена используется для извлечения P.

Факторы эффективности: сроки, размещение и частота внесения

Время

Для севооборотов, включающих бобовые, такие как люцерна или клевер, следует вносить известь, чтобы дать достаточно времени для реакции с почвой до посадки бобовых. В идеале известь следует вносить за три-шесть месяцев до посева целевой культуры. Применение даже непосредственно перед посадкой при хорошем заделке почвы может быть полезным на сильно кислых почвах. Некоторое снижение кислотности почвы все же будет происходить, хотя максимальное повышение pH обычно достигается не ранее, чем через год после внесения типичного сельскохозяйственного известняка.

Размещение

Размещение так же важно, как и качество извести. Максимальный контакт с почвой необходим для нейтрализации кислотности почвы. Наиболее распространенные материалы для известкования плохо растворяются в воде. Например, нитрат аммония примерно в 84000 раз более растворим, чем чистый карбонат кальция. Даже если известь правильно замешать в пахотном слое, она будет мало реагировать на сухую почву. Для реакции извести с почвой должна быть доступна влага. Возможно, лучший способ заделки извести или любого другого материала в слой плуга — это использовать два перпендикулярных прохода комбинированного диска, за которыми следует чизельный плуг.Глубокая вспашка извести не приводит к желаемому перемешиванию верхних слоев почвы от 6 до 8 дюймов. Однако, поскольку плуг или тяжелый тормозной диск переворачивает известь, это может помочь распределить известь в верхней части почвы. Выбор почвообрабатывающей техники будет зависеть от глубины, на которой нейтрализация кислотности почвы наиболее необходима. Хорошее горизонтальное и вертикальное перемешивание извести дает наилучшие результаты. В некоторых системах земледелия, таких как укоренившиеся многолетние дерновины или установившееся производство беспахотных культур, смешивание извести с пахотным слоем невозможно.Перед установкой этих систем возделывания необходимо добавить известь, чтобы отрегулировать уровень pH в пахотном слое до . По достижении желаемого значения pH его можно поддерживать с помощью поверхностных внесений в этих системах нулевой обработки почвы. Поверхностная известь реагирует медленнее, чем известь, смешанная с почвой, и обычно влияет только на pH в верхних 2–3 дюймах почвы. Исследования, проведенные в Университете штата Пенсильвания, показали, что поверхностное внесение известняка при нулевой обработке почвы может начать влиять на почву pH ниже 2-дюймовой глубины после четвертого года, если известь вносится примерно каждые три года.Известкование поверхности каждые три года с использованием 6000 фунтов извести / A было столь же выгодным, как и ежегодное внесение извести 3000 фунтов / A.

Частота

Чем интенсивнее выращивание сельскохозяйственных культур, чем больше используется азотных удобрений или навоза и чем выше урожайность (и удаление питательных веществ), тем больше и чаще будет потребность в извести. Отбор проб почвы — лучший способ оценить уровень pH почвы и потребность в извести.

Избыточная щелочность — естественная и индуцированная

Многие почвы в полузасушливых и засушливых регионах США имеют естественный высокий уровень pH , равный .Они могут содержать значительные количества «свободного карбоната кальция». Однако эти области не единственные, где есть проблемы, связанные с высоким значением pH , равным . Вода из ирригационных колодцев может содержать значительные количества карбоната кальция и / или магния в некоторых регионах США. Например, в районах Среднего Юга вода из некоторых оросительных колодцев содержит от 3 до 5 миллиэквивалентов бикарбоната на литр и от 3 до 5 миллиэквивалентов кальция. Акро-фут воды или более в год может доставить от 300 до 600 фунтов карбоната кальция и / или магния (извести) на акр.Системы дождевания равномерно распределяют известь в воде по полю. Если используются системы полива «наводнением» или поливом по бороздам, большая часть извести из воды может выпадать в осадок в верхних областях полей, ближайших к водозаборным отверстиям и на пути потока воды. Фактически, почва известняется поливной водой. Если распределение и подача воды будут одинаковыми в течение нескольких лет, почва может стать щелочной, при этом уровень pH почвы повысится до 7,0 и выше.Почва Повышение pH может приближаться к 0,2 pH единиц в год, пока не будет достигнуто равновесие с уровнями атмосферного углекислого газа. Такое повышение pH почвы будет происходить быстрее на крупнозернистых почвах и почвах со средней текстурой, чем на глинах, которые более забуферены.

Если вода из колодца содержит значительно больше натрия по сравнению с кальцием или магнием, может существовать риск накопления натрия на трудно выщелачиваемых почвах. Это чаще вызывает большую озабоченность в засушливых регионах, чем во влажных.Почвы с естественным высоким уровнем натрия или почвы, которые получали большое количество бикарбоната натрия в результате орошения, могут иметь уровень pH , уровень pH может достигать 8,5 или выше. Теоретически, если натрий не является фактором, даже при внесении большого количества карбоната кальция или магния, pH почвы не превысит 8,2-8,3. При pH 8,2 карбонат почвы достигает равновесия с уровнем углекислого газа в атмосфере. Если предполагается или известно, что оросительная вода содержит значительные количества солей извести и / или растворимых солей, образцы почвы следует собирать чаще, чтобы лучше контролировать уровень pH , соленость и катионный баланс почвы.Также следует периодически контролировать качество поливной воды.

Коррекция излишней щелочности путем подкисления почвы

Элементарная сера может использоваться для подкисления щелочной почвы до желательного диапазона pH . Его также можно использовать для поддержания pH в желаемом диапазоне на почвах, которые имеют тенденцию становиться щелочными при уходе. Когда элементарная сера вносится в почву, она соединяется с кислородом и водой с образованием серной кислоты. Это окисление серы вызывается определенными микроорганизмами, и это может занять от трех до шести недель или дольше, в зависимости от условий почвы.Чем мельче сера измельчается, тем быстрее превращается в сульфат и разбавленную серную кислоту. Скорость снижения pH с помощью элементарной серы может быть аналогична скорости повышения pH , вызванной известкованием. Чем больше присутствует свободного карбоната кальция и чем больше буферная почва, тем больше времени потребуется для ее подкисления. Больше серы также потребуется на почвах, в которых присутствуют свободные карбонаты. Сульфат алюминия — еще одна добавка, часто используемая в декоративном садоводстве для подкисления почвы на грядках.Однако для того, чтобы произвести такое же подкисление, что и элементарная сера, требуется его больше, даже несмотря на то, что это дает преимущество более быстрой реакции. По сравнению с элементарной серой, скорость может быть в два-семь раз больше. Эта поправка мало используется в товарном сельском хозяйстве.

ПРИМЕЧАНИЕ. Если присутствуют свободные карбонаты, потребуются более высокие количества, чем указанные. Ссылка: «Western Fertilizer Handbook», восьмое издание. Калифорнийская ассоциация удобрений

Процедуры

Как и при исследовании почвы, важным этапом анализа растений является сбор образцов.Состав растений варьируется в зависимости от возраста, части растения, в котором взят образец, состояния растения, сорта, погоды и других факторов. Поэтому необходимо следовать проверенным инструкциям по отбору проб. Большинство лабораторий предоставляют инструкции по отбору образцов различных культур, а также информационные листы и инструкции по подготовке и отправке образцов. Обычно предлагается представлять образцы как из хороших, так и из проблемных областей для сравнения, когда целью является диагностика. Поскольку для правильного отбора проб растений жизненно важны опыт и знания, советники по сельскому хозяйству или консультанты часто делают эту работу.

Четыре основных шага в анализе растений
  • Отбор проб

  • Подготовка проб

  • Лабораторный анализ

  • Интерпретация

На основе «Руководства по эффективному использованию удобрений

»,

Доктор Клифф Синдер

Дерн: pH почвы и известкование

Что измеряет pH?

pH почвы указывает на степень кислотности или щелочности почвы и выражается по шкале от нуля до 14 с pH 7.0 — нейтральная точка. Почвы со значением pH ниже 7,0 являются кислыми, а выше 7,0 — щелочными. PH почвы измеряет концентрацию ионов водорода в почвенном растворе, которая составляет лишь очень небольшую часть от общего количества ионов водорода, содержащихся в почве. Концентрация в растворе называется активной кислотностью. Основная часть концентрации ионов водорода адсорбируется на частицах глины и органического вещества почвы, и это называется резервной кислотностью почвы. Чем выше содержание глины и / или органических веществ в почве, тем выше ее способность удерживать ионы водорода и, следовательно, тем выше ее резервная кислотность.Чтобы представить это в правильной перспективе, хотя для нейтрализации ионов водорода в почвенном растворе (активная кислотность) потребуется всего от 1/8 до 2 фунтов карбоната кальция (известняка) на акр (активная кислотность), потребуется несколько тонн известняка на акр для нейтрализации ионы водорода хранятся в резерве на участках обмена почвы.

Коэффициент интенсивности и емкости кислотности почвы

pH почвы можно рассматривать как коэффициент интенсивности, аналогичный давлению воздуха в шине. Например, у нас может быть велосипедная шина и шина трактора с одинаковым давлением воздуха, так же как у нас могут быть две разные почвы с одинаковым pH.Однако давление воздуха не говорит нам о количестве воздуха, который находится в каждой шине с одинаковым давлением, а pH почвы не говорит нам о количестве ионов водорода, адсорбированных на участках обмена в случае двух наших почв с такой же pH. Количество воздуха, которое может удерживать каждая шина, разное, что очевидно по разным размерам шин. Это называется коэффициентом емкости и аналогично резервной кислотности почвы.

Как почвы становятся кислыми?

Основная причина того, что почвы являются кислыми на влажном северо-востоке, заключается в том, что выщелачивание основных катионов кальция, магния, калия и натрия оставляет участки обмена на частицах глины и гумуса открытыми.Ионы водорода замещают основные катионы в открытых обменных центрах. К другим естественным процессам, которые могут привести к повышению кислотности почвы, относятся дыхание корней и разложение органических веществ микроорганизмами. В результате деятельности человека почвы становятся кислыми. Добавление аммонийсодержащих удобрений, серосодержащих ингредиентов в удобрения и пестициды, а также промышленная деятельность, в результате которой выделяются оксиды серы и азота, попадающие в почву в результате дождя, — все это способствует повышению кислотности почвы.Удаление скошенной травы с участков с газоном уносит кальций и магний, которые в противном случае были бы переработаны. Таким образом можно удалить до 40 фунтов кальция и 18 фунтов магния на акр в год. Степень, в которой деятельность человека влияет на pH почвы, зависит от способности почвы противодействовать кислотным условиям.

Значение pH почвы

pH почвы является одним из наиболее часто измеряемых свойств почвы, поскольку он показывает процессы, происходящие в почве, и их влияние на рост растений.В сильнокислых почвах (pH почвы менее 5,2) наличие основных элементов, таких как кальций (Ca), магний (Mg), азот (N) и фосфор (P), а также микроэлементы молибден (Mo) и бор ( Б) редуцируется. Напротив, элементы цинка (Zn), меди (Cu), железа (Fe) и марганца (Mn) хорошо растворимы в сильнокислых почвах и даже могут достигать концентраций, токсичных для некоторых растений. Токсичность алюминия (AI) для растений также может проявляться в сильно или очень кислых почвах (pH 5.1) и ниже. И наоборот, такие элементы, как Zn, Fe, Cu и Mn, совершенно нерастворимы в слабощелочных (pH 7,3-8,2) почвах, что может привести к дефициту этих элементов в растениях. Фосфор также образует нерастворимые соединения в сильно щелочных почвах (pH> 8,3), что делает его недоступным для растений. Тяжелые металлы, такие как кадмий, свинец, ртуть и мышьяк, очень подвижны в сильно кислых и очень кислых почвах, что увеличивает их шанс попасть в грунтовые воды. Поддержание почв в слабокислом или почти нейтральном состоянии посредством обработки известкованием снижает подвижность тяжелых металлов, поскольку они адсорбируются на почвенных коллоидах.Кроме того, некоторые реакции с пестицидами в почве также зависят от pH почвы, который влияет на их подвижность. Адсорбция пестицидов на некоторых глинах и коллоидах гумуса усиливается по мере увеличения pH почвы из-за увеличения адсорбционной способности этих коллоидов.

Почвенные микроорганизмы также подвержены влиянию кислотности почвы. Грибы адаптированы к широкому диапазону значений pH, в то время как бактерии и актиномицеты лучше всего функционируют, когда почвы от умеренно кислой до слабощелочной. Несмотря на то, что существует множество полезных грибов, большинство патогенных заболеваний дерна вызываются грибами, поэтому почвы следует поддерживать в состоянии от слабокислого до нейтрального (pH 5.9 — 7,0). И наоборот, грибки, вызывающие грибковые пятна и болезнь розовой снежной плесени, подавляются при более низком pH почвы. Бактерии, присутствующие в почвах, играют важную роль в разложении органических веществ (включая солому) и превращениях азота, таких как нитрификация и денитрификация.

Кислотность почвы может также влиять на состав сообщества дерновых трав из-за различий в устойчивости видов к pH почвы. Полевица и овсяница мелколистная (овсяница жевательная, красная стелющаяся, твердая и овсяная) устойчивы к кислым почвам (pH 5.1-5,5) и часто обеспечивают конкурентное преимущество перед другими видами при выращивании на почвах с низким pH. И наоборот, постоянное известкование, как известно, увеличивает ежегодную популяцию мятлика на газоне. Хотя трудно сделать общие выводы о том, каким должен быть правильный pH для выращивания дерновых трав, поддержание pH от 5,5 до 7,0, по-видимому, является наиболее удовлетворительным диапазоном для большинства видов. Достигнутый конечный pH должен зависеть от рассмотрения вышеперечисленных факторов, таких как доступность питательных веществ, активность микроорганизмов и виды, составляющие сообщество дерновых трав, особенно если цель состоит в том, чтобы предоставить некоторым видам дерновых трав конкурентное преимущество перед другими.

Буфер pH

pH почвы обычно определяется в системе навозной жижи с использованием одной или двух частей дистиллированной воды, а затем измерения pH с помощью электронного измерителя. Однако некоторые лаборатории по исследованию почвы также сообщают о pH буфера вместе со значениями pH, определенными в дистиллированной воде. Эти лаборатории используют буферный раствор pH для определения потребности в извести (коэффициента емкости) почвы. Это быстрый и простой метод, при котором буферный раствор добавляется к образцу почвы и изменяется pH буфера (буферные растворы варьируются от pH 7.От 0 до 8,0), вызванное кислотами в почве, указывает количество извести, необходимое для нейтрализации кислотности почвы. Чем более кислая почва, тем больше понижение pH буферного раствора и, следовательно, тем больше требуется извести. Факторы, влияющие на известь, необходимую для нейтрализации кислотности почвы, включают содержание глины и органических веществ в почве, а также тип присутствующей глины.

Рекомендации по известняку

Рекомендации по известняку от лаборатории по исследованию почвы обычно основаны на заделке известняка на глубину вспашки, примерно 7 дюймов.Очевидное время для этого при выращивании газона — подготовка посевного ложа во время нового строительства. Возможно, это единственный раз, когда известняк, рекомендованный лабораторией, может быть применен для одного применения. (См. Информацию о нанесении на сложенный газон на следующей странице.) Кроме того, следует подчеркнуть, что известняк должен быть тщательно перемешан на шести-семи дюймах почвы. Если заделка меньше этого, количество известняка должно быть скорректировано в соответствии с таблицей .

Таблица 1. Регулировка применений известняка в зависимости от глубины заделки
Глубина включения в дюймах Коэффициент корректировки
3 0,4
4 0,6
5 0,7
7 1,0

Пример: Если рекомендуемая обработка известняка составляет 2900 фунтов на акр, а глубина заделки составляет всего 4 дюйма, умножьте рекомендованную норму на поправочный коэффициент 0.6:

Скорректированная норма = 2900 x 0,6 = 1740 фунтов известняка на акр, заложенного на глубину 4 дюйма.

Нанесение известняка на устоявшийся газон не должно превышать 70 фунтов на 1000 кв. Футов (1,5 тонны на акр) за одну обработку. Если рекомендация лаборатории по исследованию почвы превышает указанную, то известняк следует применять в несколько обработок один раз в полгода или год до тех пор, пока количество известняка, рекомендованное лабораторией, не будет достигнуто.

Нанесение известняка на газон на спортивных площадках и лужайки для гольфа, построенные из песчаных корневых зон, не должны превышать 25 фунтов на 1000 кв. Футов (1/2 тонны на акр) за одно нанесение. Такой подход гарантирует, что pH на поверхности не станет щелочным. Сельскохозяйственный известняк растворяется медленно, и требуется время, чтобы кальций и магний переместились в почвенный профиль. Кроме того, кальций и магний быстро адсорбируются на частицах глины и гумуса.

Качество известняка и рекомендуемые корректировки

Ценность известняка основана на его кислотно-нейтрализующей способности и гарантии тонкости помола. Потенциал нейтрализации кислоты выражается в эквиваленте карбоната кальция, который напечатан на каждом мешке из известняка. Эквивалент карбоната кальция является выражением чистоты известняка и влияет на фактическое количество известняка, необходимое для нейтрализации кислотности почвы. Рекомендации для известняка из лаборатории по исследованию почвы основаны на известняке со 100% чистым карбонатом кальция в качестве стандарта.Однако приобретаемый вами сельскохозяйственный известняк никогда не бывает чистым на 100% из-за естественных примесей в камне в карьере. Поэтому, чтобы определить точное количество известняка, которое вам нужно будет внести, следует скорректировать рекомендацию. Это делается путем деления лабораторной рекомендации для известняка на его эквивалент карбоната кальция и последующего умножения на 100.

  1. Эквивалент карбоната кальция (CaCO3) на мешке = 85%
    Обработка известняком, рекомендованная лабораторией = 2500 фунтов на акр

  2. Эквивалент карбоната кальция (CaCO3) на мешке = 79%
    Обработка известняка, рекомендованная лабораторией = 2500 фунтов на акр

Чем тоньше измельченный известняк, тем быстрее он вступает в реакцию с почвой, повышая ее pH.Это связано с тем, что частицы имеют большую площадь поверхности, поскольку они измельчаются более мелко, и тем фактом, что большее количество частиц известняка вступает в контакт с большим количеством частиц почвы, при условии, что известняк равномерно перемешан по всей матрице почвы. В некоторых штатах есть законы, регулирующие гарантию чистоты.

Нанесение известняка — сколько и как часто

Количество известняка, необходимое для регулирования pH почвы, будет зависеть от типа почвы и исходного pH почвы. Почвам с высоким содержанием глины и органических веществ (большая резервная кислотность) потребуется большее количество известняка для нейтрализации кислотности, чем песчаная почва с меньшим содержанием глины и органического вещества (более низкая резервная кислотность), при условии, что каждая почва изначально имеет одинаковый pH. .Например, если бы у нас была илистая суглинистая почва и суглинистый песок, каждый из которых имел pH 5,5, и мы хотели бы поднять pH до 6,5 для каждой почвы, для этого потребовалось бы от 1 до 1–3 / 4 тонны известняка на акр. регулировать кислотность почвы на супеси. Потребуется от 2-3 / 4 до 4 тонн известняка, чтобы поднять pH почвы до 6,5 для илистого суглинка. Диапазон норм в каждой почве зависит от конкретного содержания в них органического вещества.

Частота внесения известняка зависит от типа почвы и дренажа почвы.Песчаная почва нуждается в более частом известковании из-за ее более низкой буферной способности (содержит меньше кальция и магния из-за меньшего количества мест обмена), чем почва с более высоким содержанием глины и органических веществ. Плохо дренированная почва требует менее частого известкования, чем хорошо дренированная почва из-за меньшего выщелачивания основных катионов в плохо дренированных условиях.

Регулирование pH почвы на лужайках для гольфа и спортивных площадках, построенных с использованием песчаных корневых зон, является особым случаем из-за чрезвычайно плохой буферной способности песчаных корневых зон.Использование подкормочного материала в рамках планового ухода, значение pH которого близко или выше нейтрального (pH 7,0), может быть всем, что требуется для поддержания pH зоны корня на уровне 6,5 или выше, особенно на поверхности. С другой стороны, регулярное применение сильнокислотного материала для верхней отделки (pH 5,1) может быстро изменить pH, при котором поверхность корневой зоны может стать слишком кислой, что потребует легкого нанесения известняка. Необходимо следить за тем, чтобы эти почвы не покрывались известью, потому что они, скорее всего, уже испытывают дефицит питательных микроэлементов, а их доступность может еще больше снизиться из-за перекрытия почвы.

Управление pH почвы является неотъемлемой частью передовой практики управления и требует знания того, как почвы становятся кислыми, и той важной роли, которую pH играет в физических, химических и биологических свойствах почв и последующей реакции и силе дерновой травы. Невозможно переоценить уделение пристального внимания этому важному свойству почвы.

Пересмотрено : 05/2011

Кислотность почвы

Кислотность почвы

Обратно к доктору Н. В. Хюэ


Кислотные почвы на Гавайях:
Проблемы и управление

Н.В. Хюэ и Х. Икава,
Кафедра агрономии и почвоведения,
Колледж тропического сельского хозяйства и человеческих ресурсов
Гавайский университет в Маноа


Введение

Кислые почвы по определению — это почвы с pH ниже 7,0. Чем ниже pH, чем более кислая почва. Каждая единица падения pH указывает на повышение кислотности в десять раз. Например, pH 5,0 имеет в 10 раз большую кислотность, чем pH 6.0, и в 100 раз больше кислотности, чем pH 7,0. Большинство почв Гавайев имеют pH от 4,0 до 8,0, а многие — ниже 6,0. В таблице 1 для сравнения приведен pH некоторых стандартных элементов.

Таблица 1. pH некоторых обычных предметов.

Изделие

pH

Изделие

pH

Наиболее кислые почвы 4,0 — 6,0 Лимонный сок 2.2 — 2,4
Апельсиновый сок 3,4 — 4,0 Уксус 4,0 — 4,5
Кислотный дождь 3,0 — 5,0 Чистая дождевая вода 5,5 — 5,7
Свежее молоко 6,3 — 6,6 Плазма крови 7,2 — 7,4
Мягкий мыльный раствор 8,5 — 10,0

Как почвы становятся кислыми

На Гавайях многие почвы стали кислыми из-за высоких температур. и идет сильный дождь.В таких условиях окружающей среды почвы быстро выветриваются. Основные катионы (например, Ca, Mg, K), необходимые для живых организмов, выщелачиваются из профиля почвы, оставляя более стабильные материалы богат оксидами Fe и Al. Этот естественный процесс выветривания делает почвы кислыми и вообще лишен питательных веществ.
Подкисление почвы в результате выветривания
Искусственные процессы также в значительной степени способствуют повышению кислотности почвы. Применение Nh5 + производит удобрения (например,г., мочевина, безводный Nh4, (Nh5) 2SO4) подкисляют почвы посредством биологической реакции, посредством которой Nh5 + окисляется до NO3- и H +. Диоксид серы (SO2) и оксиды азота (NOx), выделяемые в основном в результате промышленной деятельности, вступают в реакцию с водой с образованием кислотных дождей, которые подкисляют почвы, особенно лесные почвы с низким буферные емкости.

Почему кислые почвы бесплодны

Кислые почвы имеют множество проблем, отрицательно влияющих на рост сельскохозяйственных культур.Наиболее важные из них:

Токсичность алюминия.

Алюминий более растворим в кислых условиях; и высокий уровень Al токсичен растениям. Отравление алюминием обычно сначала поражает корневую систему. Корни, пораженные алюминием, обычно укорачиваются и опухают, коренастый вид.

Токсичность марганца.

В отличие от Al, токсичность Mn сначала проявляется в верхушках растений. Симптомы различаются среди видов растений, но часто специфичны для данного вида. Например, Низкорослые, сморщенные и хлоротичные листья являются симптомами токсичности Mn для соевых бобов.

Дефицит кальция.

В отличие от кислых почв материковой части США, кислые почвы на Гавайях часто имеют дефицит кальция, а не токсичны для алюминия.Эта проблема особенно остро стоит на Кауаи, старейшем острове штата. Поскольку внутри растения кальций практически неподвижен, симптомы его дефицита сначала появляются в точках роста. У кукурузы и таро растения с дефицитом кальция отстают в росте; молодой листья не могут полностью развернуться, тогда кончики или края листьев вскоре отмирают.



(Дефицит кальция в таро Бун-Лонг; любезно предоставлено г-жой М. Калисей)

Дефицит фосфора.

Фосфор может сильно реагировать с Fe и Al компонентами кислых тропических водоемов. почвы, тем самым становясь недоступными для поглощения растениями. Старые листья с дефицитом фосфора растения часто пурпурные из-за накопления антоцианов (пурпурных пигментов).

Обработка кислых почв

Известкование.

Хотя посев кислотоустойчивых культур является разумным опцион на дилинг
на кислых почвах известкование традиционно используется для коррекции кислотности почвы и улучшить
продуктивность почвы.


Когда известь (например, CaCO3) добавляется во влажную почву, происходят следующие реакции: произойдет:

(1) Известь медленно растворяется влагой в почве с образованием Ca2 + и OH-

CaCO3 + h3O (в почве) ==> Ca2 + + 2OH- + CO2 (газ)

(2) Новое производство Ca2 + будет обмениваться с Al3 + и H + на поверхности
кислых почв

2Ca2 + + почва-Al ===> почва-Ca + Al3 +
+ почва-H почва-Ca + H +

(3) ОН-, образующийся из извести, будет реагировать с Al3 + с образованием твердого Al (OH) 3 и с H +
образовывать воду.

Al3 + + 3OH- ===> Al (OH) 3 (твердый)
Н + + ОН- ===> h3O

Таким образом, известкование устраняет токсичные Al3 + и H + через реакции с OH-. Избыток ОН- извести повышает pH почвы, что является наиболее заметным эффектом известкования. Еще одним дополнительным преимуществом известкования является поступление Ca2 + и Mg2 +, если доломит [Ca, Mg (CO3) 2] используется.

Поскольку почвы сильно различаются по минералогии, содержанию органических веществ и глины, они требуется различное количество извести для повышения pH почвы до заданного значения.Таким образом, известь Кривые требований должны быть построены для отдельных почв, которые будут использоваться при оценке извести. На рис. 1 показан пример таких кривых.

Рис. 1. Кривые потребности в извести для почвы Халий (Кауаи) и почвы Паалоа. (Оаху) .

Посев кислотоустойчивых культур.

Различные виды растений (даже разновидности внутри одного вида) лучше всего растут на разных участках. Диапазон pH. Например, азалия и камелия хорошо растут только при pH ниже 5.5, и появляются страдать от недостатка железа и / или марганца при более высоких значениях pH. Также ананас хорошо переносит кислотность почвы намного лучше, чем у сахарного тростника. В таблице 2 перечислены диапазоны pH почвы. для оптимального роста выбранные культуры.

Таблица 2. Диапазон pH почвы для оптимального роста некоторых культур.

Урожай

pH

Урожай

pH

Люцерна 6.5-7,5 Авокадо 6,0 — 6,5
Азалия 4,5 — 5,0 Камелия 4,5 — 5,5
Имбирь 6,0 — 7,0 Макадамия 5,0 — 6,5
Ананас 4,7 — 5,7 Сахарный тростник 6,0 — 7,0
Таро 5,5 — 6,5

Выводы

Кислые почвы широко распространены на Гавайях, а также во всем мире.Их явления вызваны естественными процессами (выветривание) и / или антропогенными процессы (добавление в почвы удобрений Nh5, высвобождение кислот, образующих газы в атмосферу). Кислые почвы бесплодны из-за (i) Al и / или Токсичность Mn и (ii) дефицит кальция и / или фосфора. Кислые почвы можно обрабатывать путем известкования на основе соответствующих кривых потребности в извести или путем выращивания кислотоустойчивые культуры.

Вернуться к доктору Н. В. Хюэ

Роль pH почвы в питании растений и восстановлении почвы

В естественной среде pH почвы оказывает огромное влияние на биогеохимические процессы почвы.Таким образом, pH почвы описывается как «основная переменная почвы», которая влияет на множество биологических, химических и физических свойств почвы и процессов, влияющих на рост растений и урожай биомассы. В этой статье обсуждается, как pH почвы влияет на процессы, которые связаны с биологическими, геологическими и химическими аспектами почвенной среды, а также как эти процессы в результате антропогенного вмешательства вызывают изменения pH почвы. В отличие от традиционных дискуссий о различных причинах pH почвы, особенно подкислении почвы, в этой статье основное внимание уделяется взаимосвязям и эффектам в том, что касается биогеохимии почвы.Во-первых, обсуждается влияние pH почвы на доступность, подвижность и биологические процессы в почве, а затем следует биогенное регулирование pH почвы. Сделан вывод, что pH почвы может широко применяться в двух широких областях, а именно, круговорот питательных веществ и питание растений и ремедиация почвы (биоремедиация и физико-химическая ремедиация).

1. Введение

Для многих pH почвы важен только для химического состава и плодородия почв. Однако признание функций почвы за пределами обеспечения растений питательными веществами и роли почвы как среды для роста растений потребовало изучения почвы и ее свойств в свете более широких функций экосистемы с использованием междисциплинарного подхода.Это позволяет ученым рассматривать процессы от ландшафта до регионального и глобального уровней. Одним из процессов, олицетворяющих мультидисциплинарный подход к почвоведению, является биогеохимия почв, изучающая биогеохимические процессы. Экосистемные функции почвы в некоторой степени тесно связаны с почвенными биогеохимическими процессами, которые являются связями между биологическими, химическими и геологическими процессами [1]. Почва является важнейшим элементом систем жизнеобеспечения, поскольку она обеспечивает ряд экосистемных товаров и услуг, таких как хранение углерода, регулирование водных ресурсов, плодородие почвы и производство продуктов питания, которые влияют на благосостояние человека [2–4].Эти экосистемные товары и услуги в широком смысле классифицируются как поддерживающие, обеспечивающие, регулирующие и культурные услуги [5]. Согласно оценке экосистем на пороге тысячелетия [5], обеспечивающие и регулирующие функции оказывают наибольшее влияние на компоненты благополучия человека с точки зрения безопасности, основного материала для хорошей жизни, здоровья и хороших социальных отношений.

В естественной среде pH почвы имеет огромное влияние на биогеохимические процессы в почве.Таким образом, pH почвы описывается как «основная переменная почвы», которая влияет на множество биологических, химических и физических свойств почвы и процессов, влияющих на рост растений и урожай биомассы [6, 7]. PH почвы сравнивается с температурой пациента во время постановки медицинского диагноза, потому что он легко дает представление о состоянии почвы и ожидаемом направлении многих почвенных процессов (выступление с лекцией заслуженного профессора Эрика Ван Ранста, Гентский университет). Например, pH почвы регулируется выщелачиванием основных катионов, таких как Ca, Mg, K и Na, далеко за пределами их высвобождения из выветрившихся минералов, оставляя ионы H + и Al 3+ доминирующим способным к обмену катионам; растворение CO 2 в почвенной воде с образованием углекислоты, которая диссоциирует и высвобождает ионы H + ; гуминовые остатки от гумификации органического вещества почвы, в результате чего образуются карбоксильные и фенольные группы высокой плотности, которые диссоциируют с высвобождением ионов H + ; нитрификация до дает ионы H + ; удаление азота из продуктов растительного и животного происхождения; и поступления от кислотных дождей и поглощения азота растениями [8].С другой стороны, pH контролирует биологию почвы, а также биологические процессы. Следовательно, существует двунаправленная связь между pH почвы и биогеохимическими процессами в наземных экосистемах, особенно в почве. В этом смысле pH почвы влияет на многие биогеохимические процессы, тогда как некоторые биогеохимические процессы, в свою очередь, в некоторой степени влияют на pH почвы, как показано на Рисунке 1.


На протяжении многих десятилетий интенсивные исследования показали, что pH почвы влияет на многие биогеохимические процессы.Недавние успехи в исследованиях сделали интригующие открытия о важной роли pH почвы во многих почвенных процессах. Это важное свойство почвы контролирует взаимодействие ксенобиотиков в трех фазах почвы, а также их судьбу, перемещение и трансформацию. Таким образом, pH почвы определяет судьбу веществ в почвенной среде. Это влияет на рециркуляцию и доступность питательных веществ для растениеводства, распространение вредных веществ в окружающей среде и их удаление или перемещение.Функциональная роль pH почвы в биогеохимии почвы использовалась для восстановления загрязненных почв и контроля над перемещением и преобразованием загрязнителей в окружающей среде. К сожалению, во многих исследованиях pH почвы часто измеряется случайно как норма без тщательного учета его роли в почве. В этой статье делается попытка изучить важность pH как индикатора биогеохимических процессов почвы в исследованиях окружающей среды, обсуждая биогеохимические процессы, на которые влияет pH почвы, биогеохимические процессы, которые также контролируют pH почвы, а также актуальность взаимосвязи для будущих исследований. планирование и развитие.

2. Биогеохимические процессы, на которые влияет pH почвы
2.1. Транслокация вещества

Одновременно, в соответствии с биохимическими изменениями, физико-химические процессы, включая растворение, осаждение, адсорбцию, разбавление, улетучивание и другие, влияют на качество фильтрата [9].

2.1.1. Подвижность микроэлементов

pH почвы контролирует растворимость, подвижность и биодоступность микроэлементов, которые определяют их перемещение в растениях [10].Это в значительной степени зависит от распределения элементов между твердой и жидкой фазами почвы через реакции осаждения-растворения [10, 11] в результате рН-зависимых зарядов в минеральных и органических фракциях почвы. Например, отрицательные заряды преобладают при высоких значениях pH, тогда как положительные заряды преобладают при низких значениях pH [12]. Кроме того, количество растворенного органического углерода, которое также влияет на доступность микроэлементов, контролируется pH почвы. При низком pH микроэлементы обычно растворимы из-за высокой десорбции и низкой адсорбции.При промежуточном pH тенденция адсорбции микроэлементов увеличивается от почти полного отсутствия адсорбции до почти полной адсорбции в узком диапазоне pH, который называется границей адсорбции pH [13]. С этого момента элементы полностью адсорбируются [13]. Например, Брэдл [13] обнаружил, что при pH 5,3 адсорбция Cd, Cu и Zn на осадочном композите, состоящем из оксидов Al, Fe и Si, составляет 60%, 62% и 53% соответственно. . Напротив, он обнаружил, что 50% Cd и Zn сорбируются гуминовыми кислотами при pH 4.8–4,9 [13]. Судьба легкодоступных микроэлементов зависит как от свойств их ионных форм, образующихся в почвенном растворе, так и от химической системы почвы, помимо самого pH почвы [14]. Исследования установили, что с увеличением pH почвы растворимость большинства микроэлементов будет снижаться, что приводит к низким концентрациям в почвенном растворе [14]. Любое увеличение или уменьшение pH почвы оказывает явное влияние на растворимость металлов. Вероятно, это может зависеть от ионных разновидностей металлов и направления изменения pH.Ренгель [15] заметил, что растворимость двухвалентных металлов снижается в сотни раз, а трехвалентных — в тысячу раз. Напротив, Ферстер [10] обнаружил, что снижение pH почвы на одну единицу приводит к десятикратному увеличению растворимости металлов. В ходе эксперимента он заметил, что при pH 7 только около 1 мг Zn · L -1 из 1200 мг · кг -1 общего содержания Zn присутствовало в почвенном растворе. При pH 6 концентрация достигала 100 мг Zn · L -1 , в то время как при pH 5 присутствовало 40 мг Zn · L -1 .Помимо адсорбции, концентрации микроэлементов при высоком pH почвы также могут быть вызваны осаждением карбонатов, хлоридов, гидроксидов, фосфатов и сульфатов [11, 16]. Апатит и известь, внесенные в почвы, оказали наибольшее влияние на pH и одновременно снизили концентрации доступных, вымываемых и биодоступных Cu и Cd [16].

2.1.2. Подвижность органических фракций почвы

Органическое вещество почвы существует в различных фракциях, начиная от простых молекул, таких как аминокислоты, мономерные сахара и т. Д.в полимерные молекулы, такие как целлюлоза, белок, лигнин и т. д. Они встречаются вместе с неразложившимися и частично разложившимися растительными и микробными остатками [17]. Растворимость и подвижность фракций различаются во время и после разложения и могут привести к выщелачиванию растворенного органического углерода и азота в некоторых почвах. Растворенный органический углерод определяется как размер органического углерода, который проходит через фильтр диаметром 0,45 мм [18]. PH почвы увеличивает растворимость органического вещества почвы за счет увеличения диссоциации кислотных функциональных групп [19] и уменьшает связи между органическими компонентами и глинами [20].Таким образом, содержание растворенного органического вещества увеличивается с увеличением pH почвы и, следовательно, минерализуемых C и N [20]. Это объясняет сильное влияние щелочных условий pH почвы на вымывание растворенного органического углерода и растворенного органического азота, наблюдаемое во многих почвах, содержащих значительные количества органического вещества [19, 21]. То же наблюдение было сделано для концентрации растворенного органического углерода в почвах торфяников [22]. PH-зависимость концентрации растворенного органического углерода становится более выраженной после pH 6 [23].

В условиях pH в конкретной почвенной системе растворимость органического вещества сильно зависит от типа основания и особенно выше в присутствии одновалентных катионов, чем в случае поливалентных [23]. Согласно Андерссону и Нильссону [24] и Андерссону и др. [19], pH почвы контролирует растворимость органических веществ двумя основными способами: (i) его влияние на плотность заряда гуминовых соединений и (ii) либо стимуляция, либо подавление микробной активности.Первое оказывается более выраженным, чем второе [19].

2.2. Биологические процессы почвы
2.2.1. Микробные экофизиологические индикаторы

Экофизиология — это взаимосвязь между физиологическим функционированием клетки под влиянием факторов окружающей среды [25]. Он оценивается с использованием метаболического коэффициента ( q CO 2 ) в качестве индекса [25], показывающего эффективность использования органического субстрата почвенными микробами в конкретных условиях [26].Уменьшение дыхания микробного сообщества делает C доступным для производства большего количества биомассы, что дает более высокую биомассу на единицу [27]. Таким образом, метаболический коэффициент описывается как физиологическая единица, отражающая изменения в условиях окружающей среды [25]. Это означает, что любое изменение условий окружающей среды в сторону неблагоприятного состояния будет обозначаться индексом [25]. Это контролируется pH почвы [28]. PH почвы как движущая сила для микробных экофизических показателей проистекает из его влияния на микробное сообщество вместе с требованиями сообщества к поддержанию [28] и был одним из предикторов метаболического коэффициента [29, 30].Было обнаружено, что метаболический коэффициент в почвах с низким pH в два с половиной раза выше, чем в почвах с нейтральным pH [28]. Это было связано с отклонением внутреннего pH клетки (обычно поддерживаемого на уровне 6,0) от окружающих условий pH, что увеличивает требования к содержанию и снижает общую продуцируемую микробную биомассу [25].

Из литературы следует, что условия pH почвы, необходимые для микробной активности, находятся в диапазоне 5,5–8,8 [26, 31, 32]. Таким образом, дыхание почвы часто увеличивается с увеличением pH почвы до оптимального уровня [26].Это также коррелирует с содержанием C и N в микробной биомассе, которое часто выше pH 7 [26]. В условиях низкого pH дыхание грибов обычно выше, чем дыхание бактерий, и наоборот [25], потому что грибы более приспособлены к кислым условиям почвы, чем бактерии.

2.2.2. Активность почвенных ферментов

Внеклеточные ферменты вырабатываются почвенными микроорганизмами для биогеохимического круговорота питательных веществ [33]. PH почвы важен для правильного функционирования активности ферментов в почве [34, 35] и может косвенно регулировать ферменты, воздействуя на микробы, которые их производят [36].Однако в биологических системах существует множество ферментов, которые способствуют преобразованию различных веществ. Кроме того, ферменты бывают разного происхождения и с разной степенью стабилизации на твердых поверхностях. Таким образом, pH, при котором они достигают своей оптимальной активности (pH optima), вероятно, будет отличаться [33]. Поразительно, что ферменты, действующие на одни и те же субстраты, могут значительно различаться по оптимуму pH. Это очевидно для фосфорных ферментов, которые имеют как кислотные, так и щелочные окна функционирования в диапазоне pH 3-5.5 и pH 8,5–11,5 [33]. В исследовании оптимального pH для специфической активности ферментов в почвах семи влажных тропических лесов в Центральной Панаме Тернер [33] классифицировал ферменты на три группы в зависимости от их оптимума pH, обнаруженного в почвах. Это были: (а) ферменты с кислым оптимумом, которые оказались одинаковыми для разных почв, (б) ферменты с кислым оптимумом рН, который варьировался между почвами, и (в) ферменты с оптимумом как по кислому, так и по щелочному рН почвы. Стурсова и Уокер [37] обнаружили, что фосфорорганическая гидролаза имеет оптимальную активность при более высоких значениях pH.Например, гликозидазы имеют оптимальный диапазон pH от 4 до 6 по сравнению с протеолитическими и окислительными ферментами, оптимумы которых составляли от 7 до 9 [35, 36, 38]. Изменения в составе микробного сообщества могут потенциально влиять на производство ферментов, если разные группы микробов требуют более низких концентраций питательных веществ для создания биомассы или имеют ферменты, которые различаются по сродству к питательным веществам [39].

2.2.3. Биодеградация

Почвенные микроорганизмы описываются как экосистемные инженеры, участвующие в преобразовании веществ в почве.Одним из таких преобразований является биодеградация, процесс, посредством которого микробы восстанавливают загрязненные почвы, превращая токсичные вещества и ксенобиотики в наименее или более токсичные формы. Биодеградация — это химическое растворение органических и неорганических загрязнителей микроорганизмами или биологическими агентами [34, 40]. Как и многие биологические процессы в почве, pH почвы влияет на биоразложение через свое влияние на микробную активность, микробное сообщество и разнообразие, ферменты, которые помогают в процессах разложения, а также на свойства веществ, подлежащих разложению.PH почвы был наиболее важным свойством почвы при разложении атразина [41]. Как правило, щелочной или слабокислый pH почвы усиливает биоразложение, тогда как кислая среда ограничивает биоразложение [34, 37, 42]. Обычно оптимальными для разложения масла считаются значения pH от 6,5 до 8,0 [43]. В этом диапазоне определенные ферменты действуют в пределах определенного спектра pH. Например, пестицид фенамифос разложился в двух почвах Соединенного Королевства с высоким pH (> 7,7) и двух австралийских почвах с pH в диапазоне от 6.С 7 по 6,8. Процесс биодеградации несколько замедлился в трех кислых почвах Соединенного Королевства (pH 4,7–6,7) через 90 дней после инокуляции [42]. Сюй [44] обнаружил, что некоторые штаммы бактерий, выделенные из загрязненной нефтью почвы в северном Китае, способны разлагать более 70% нефти при pH 7 и 9. В эксперименте по разложению полициклических ароматических углеводородов (ПАУ) половина ПАУ разлагалась. при pH 7,5 в течение семи дней, что соответствует наибольшему разложению [34]. Это было связано с самыми высокими популяциями бактерий [34].Кроме того, Houot et al. [41] обнаружили повышенную деградацию атразина во французских и канадских почвах, которая происходила при повышенном pH почвы. Они наблюдали максимальное почвенное дыхание в почвах, загрязненных атразином, при значениях pH выше 6,5 по сравнению с почвенными значениями pH менее 6,0, где метаболиты скорее накапливались.

2.2.4. Минерализация органических веществ

Минерализация органических веществ часто выражается в минерализации углерода (C), азота (N), фосфора (P) и серы (S) под действием микробов.PH почвы контролирует минерализацию почвы из-за его прямого воздействия на микробное население и их деятельность. Это также имеет значение для функций внеклеточных ферментов, которые помогают микробной трансформации органических субстратов. Кроме того, при более высоком pH почвы минерализуемые фракции C и N увеличиваются, поскольку связь между органическими компонентами и глинами нарушается [20]. В исследовании минерализации C и N в различных возвышенных почвах субтропиков, обработанных различными органическими материалами, Khalil et al.[45] обнаружили, что pH почвы и отношение C / N были ответственны за 61% скорости разложения с соответствующим увеличением выбросов CO 2 , чистой минерализации азота и чистой нитрификации в щелочных почвах, чем в кислых почвах. Подобные результаты ранее были получены Curtin et al. [20].

2.2.5. Нитрификация и денитрификация

Нитрификация и денитрификация — важные процессы преобразования азота, вызывающие озабоченность окружающей среды. Как и многие биогеохимические процессы, эти процессы в значительной степени контролируются pH почвы.Нитрификация включает превращение аммония в нитрат микробами. Обычно он увеличивается с увеличением pH почвы, но достигает оптимального значения pH [45–47]. В четырехлетнем исследовании Kyveryga et al. [47] наблюдали, что диапазон pH почвы от 6 до 8 сильно влияет на скорость нитрификации удобрения N. Как правило, скорость нитрификации снижается при более низких значениях pH почвы. В некоторых почвах потенциал нитрификации и нитрификации значительно снижается или незначителен при значениях pH ниже 4,2. Однако нитрификация может происходить даже при pH ниже 4.14, предполагая, что сообщества, окисляющие аммиак и нитрификаторы, могут оставаться активными при низком pH почвы [48].

Денитрификация — это микробиологический процесс, в котором окисленные частицы азота, такие как нитрат () и нитрит (), восстанавливаются до газообразного оксида азота (NO), закиси азота (N 2 O) и молекулярного азота (N 2 ). в условиях ограниченного количества кислорода [49]. PH почвы влияет на скорость денитрификации, потенциальную денитрификацию и соотношение между двумя основными продуктами денитрификации (N 2 O и N 2 ).Отношение обратно пропорционально pH почвы [49]. При значениях pH ниже 7 основным продуктом денитрификации был N 2 O, тогда как при значениях pH выше 8 преобладал N 2 [49]. Sun et al. [50] обнаружили, что pH почвы был лучшим предиктором скорости денитрификации, где соотношение N 2 / N 2 O увеличивалось экспоненциально с увеличением pH почвы. Это связано с тем, что низкий pH препятствует сборке функциональной редуктазы закиси азота, фермента, восстанавливающего N 2 O до N 2 при денитрификации [15, 20], и это в основном зависит от естественного pH почвы [49].Однако pH почвы, при котором наблюдается самая высокая активность редуктазы закиси азота, был около pH 7,3. Это произошло в почвах с добавлением гидроксида калия (КОН) [51]. Это предполагает ингибирование денитрификации при высоком pH, особенно до pH 9 [50]. Более того, максимальная денитрификация от 68% до 85% произошла в песчаной и суглинистой почве с pH 5,2 и 5,9 соответственно [52]. Оптимальный pH для долгосрочной потенциальной денитрификации составлял от 6,6 до 8,3. Кроме того, кратковременная активность денитрифицирующего фермента зависела от естественного pH почвы [49].Влияние pH почвы на денитрификацию частично связано с контролем pH над популяциями денитрифицирующих микробов. Размер резидентной популяции нитратредуцирующих бактерий резко увеличивался при повышении pH кислой почвы [53].

2.2.6. Улетучивание аммиака

Улетучивание аммиака — это явление, которое происходит естественным образом во всех почвах [54] и было приписано диссоциации NH 3 и H + , показанных в уравнении (1) [55]

диссоциация приближается к равновесию за счет подкисления среды.Скорость подкисления зависит от начальной и конечной концентрации аммония, а также от буферной способности среды [55]. Когда pH раствора увеличивается выше 7, в реакции расходуется H + . Таким образом, диссоциация аммония до аммиака в уравнении (1) будет способствовать улетучиванию аммиака. В нейтральных и кислых почвах содержащие удобрения менее подвержены потерям NH 3 , чем мочевина и удобрения, содержащие мочевину [54]. Однако степень будет также зависеть от конкретного удобрения и его влияния на pH почвы.В исследовании, посвященном улетучиванию аммиака из соленой щелочной почвы, культивируемой с рисом, Ли и др. [56] обнаружили, что улетучивание аммиака быстро увеличивается с увеличением pH и достигает пика при pH 8,6. Улетучивание аммиака сильно коррелирует с pH и карбонатом кальция, что свидетельствует о том, что pH почвы был ключевым фактором улетучивания аммиака, потому что карбонат кальция увеличивает pH почвы, что, в свою очередь, контролирует концентрацию аммиака и аммония в почвенном растворе [57].

3. Биогенная регуляция pH почвы

Биологические процессы почвы, связанные с живыми организмами, и биохимические преобразования останков мертвых организмов вызывают изменения pH почвы.Это может происходить либо за счет прямого воздействия биохимических процессов, происходящих в живых организмах в почвенной системе, в основном через процессы ризосферы, либо за счет прямого и косвенного воздействия внесенных органических остатков, будь то несгоревшие, сгоревшие или обугленные формы, а также их разложение.

3.1. Ризосферные процессы

Ризосфера — это объем почвы по соседству с корнями, на который влияют корни и микробная активность [58–60] Hiltner 1904, цитируется по [60].Это продольный и радиальный уклон [61] в диапазоне от 0 до 2,0 мм от корневого мата [62, 63]. В этом небольшом объеме почвы корни впитывают воду и питательные вещества, растягиваются и расширяются, выделяют экссудат, дышат и, таким образом, обладают более высокой микробной активностью [59, 63]. Посредством некоторых из этих биологических процессов корни растений обладают способностью вызывать изменения pH в ризосфере либо путем высвобождения протонов (H + ), либо гидроксильных ионов (OH ) для поддержания ионного баланса [58, 64], в зависимости от статус питания растений [65].Следовательно, pH ризосферы может увеличиваться или уменьшаться в зависимости от преобладающего процесса и типов выделяемых ионов.

Изменение pH почвы в ризосфере, вызванное корнями растений, контролируется особыми процессами и факторами, такими как (i) поглощение ионов в сочетании с высвобождением неорганических ионов, которые поддерживают электронейтральность, (ii) выделение анионов органических кислот, (iii) экссудация и дыхание корней, (iv) окислительно-восстановительные процессы, (v) микробное производство кислот после ассимиляции высвобожденного углерода корня и (vi) генотип растения [58, 59].Удивительно, но корни больше склонны повышать pH ризосферы, чем понижать его [65, 66]. Доминирующим механизмом, ответственным за изменение pH в ризосфере, является поглощение растениями питательных веществ в форме катионов и анионов [58, 59, 65], в первую очередь из-за поглощения растениями двух основных форм неорганического азота (и), который обычно приняты в больших количествах [59]. Азот поглощается растениями в трех основных формах: аммоний (), нитрат () и молекулярный азот (N 2 ) [59], хотя аминокислоты также могут поглощаться [58].Поглощение каждой из трех форм азота сопровождает высвобождение соответствующих ионов для поддержания электронейтральности в ризосфере. Когда нитраты доминируют в почве или когда преобладает их поглощение, растения должны выделять бикарбонатные () или гидроксильные ионы (OH ) для поддержания электрической нейтральности на границе раздела почва-корень, что приводит к увеличению pH ризосферы [58, 59, 64]. Напротив, протоны высвобождаются растениями в ответ на поглощение, вызывая снижение pH ризосферы [58, 62].Было обнаружено, что 15, 6 и 0%, соответственно, азота от общего азота, присутствующего в почве, необходимо для уменьшения снижения pH ризосферы на 1,2 единицы, поддержания его или повышения на 0,4 единицы pH [62] .

Степень воздействия процессов и факторов, контролирующих изменение pH ризосферы, зависит от вида растений и стадий роста [65]. Например, в исследовании взаимодействий подкисления ризосферы Faget et al. [67] обнаружили различия в закислении ризосферы кукурузы ( Zea mays L.) и фасоль ( Phaseolus vulgaris L.). Изначально кукуруза подкисляла ризосферу и постепенно подщелачивала ее со временем, в то время как бобы показали противоположные эффекты. Они обнаружили эффект взаимодействия двух видов растений на изменение pH ризосферы, в результате чего степень подкисления или защелачивания была слабее, когда корни росли в одном районе, чем когда корни не росли рядом друг с другом. Однако pH ризосферы изменяется со временем в результате переменного поглощения ионов азота, видов растений и стадий их роста растений [67].Это было выявлено в эксперименте на яблонях ( Malus pumila Miller), гречихе ( Fagopyrum esculentum Moench), кукурузе ( Zea mays L.), коровьем горохе ( Vigna unguiculata (L) Walp.), Кафре. лайм ( Citrus hystrix DC.), салат ( Lactuca sativa L.), сосны ( Pinus sp. L.) и пшеница ( Triticum aestivum L.), где Мецгер [66] обнаружил максимум концентрации в ризосфере во время стадий цветения и плодоношения (рис. 2), которая была на 10–29% выше, чем в основной массе почвы.Концентрации в ризосфере растений были следующими: салат = гречка> сосна> яблоко> кафр> вигновый горох> кукуруза> пшеница. Эти значения были намного ниже, чем полученные в ризосфере сои (Glycine max (L.) Merr.) [64]. Кроме того, Turpault et al. [59] обнаружили, что 93% NO 3 -N было поглощено древостоями пихты Дугласа ( Pseudotsuga menziesii (Mirb.) Franco) в период с апреля по сентябрь по сравнению с 83% поглощением в период с октября по март.Это, вероятно, увеличивает pH ризосферы и подразумевает, что в периоды низкого поглощения нитратов pH почвы может снижаться из-за буферизации или из-за реакции на поглощение.


3.2. Сырые и сжигаемые органические материалы

Когда несгоревшие органические материалы или сырые растительные остатки вносятся в почву, pH увеличивается до пика, а затем снижается. Например, Forján et al. [68] обнаружили первоначальное повышение pH почвы, когда они применяли смесь ила от отбеливателя, городских твердых отходов и отходов шахт, а также смесь ила от очистных сооружений, древесной щепы и остатков от агропродовольственной промышленности на почва.Кроме того, добавление молодых побегов Kikuyu ( Pennisetum clandestinum L.) также увеличивало pH почвы до одной единицы pH [69]. Основные причины этого изменения pH связаны с (i) высвобождением избыточной щелочности остатка, связанной с основными катионами, такими как Ca, K, Mg и Na [70]; (ii) декарбоксилирование органических анионов, которое происходит во время минерализации C, вызывая потребление протонов и высвобождение OH [71, 72]; (iii) аммонификация остатка N; (iv) нитрификация минерализованного остатка N; и (v) ассоциация / диссоциация органических соединений [70].Эти процессы определяются внесенным количеством и преобладающими почвенными и экологическими условиями [70]. По данным Xu et al. [70]; прямые химические реакции и окисление органических анионов во время разложения остатков являются основными механизмами, участвующими в повышении pH почвы, вызванном органическими анионами. Кроме того, органические анионы и другие отрицательно заряженные химические функциональные группы, присутствующие в органическом веществе, могут вступать в реакции ассоциации с ионами H + [71, 73].

Повышение pH почвы после внесения пожнивных остатков также зависит от типа пожнивных остатков (однодольных или двудольных), который связан с количеством присутствующей щелочности, качеством остатков (отношение C / N), скоростью внесения остатков и разложение, начальный pH и буферная способность почвы [70, 71].Различные остатки имеют разный химический и биохимический состав, который определяет процессы, ответственные за изменение pH почвы. Это было обнаружено в эксперименте по инкубации с участием трех почв и пяти различных типов остатков, где pH почвы увеличивался в зависимости от люцерны> нута> медикамента> пшеницы с высоким содержанием азота> пшеницы с низким содержанием азота [70]. Кроме того, в ходе 59-дневной лабораторной инкубации [71] и полевых экспериментов [74] было обнаружено, что величина увеличения pH почвы после внесения поправки на остатки была в порядке нут> канола> пшеница [71, 74].Они заметили, что 40–62% растворимой щелочности в остатках канолы и нута ответственны за повышение pH. Из этих и многих других исследований [69] очевидно, что остатки двудольных растений, особенно бобовых, обладают высокой щелочностью и оказывают большее влияние на изменение pH почвы, чем однодольные. Повышение pH после добавления остатка часто достигает пика, а затем снижается в результате нитрификации. Остатки с низким соотношением углерод-азот (C / N) часто связаны с резким снижением pH через определенный период, и степень зависит от типа почвы и буферной способности почвы [70, 71, 74], тогда как остатки с высокими отношениями C / N производят меньшее повышение pH или совсем не повышают его [70].

Исходный pH и буферная способность почв, принимающих растительные остатки, имеют огромное значение в степени изменения pH после внесения. Например, три типа почвы с различным начальным pH почвы, а именно: супесь Воджил с pH (CaCl 2 ) 3,87, супесь Bodallin с pH 4,54 и песчаная почва Lancelin с pH 5,06, были инкубированы с остатками нута. люцерна, медик, пшеница с высоким содержанием азота и пшеница с низким содержанием азота. После этого pH увеличился примерно на 3,3 единицы с люцерной в почве Воджил (3.87), 1,6 с нутом, 1,5 с медиком и 0,5 с пшеницей с высоким содержанием азота и без увеличения для пшеницы с низким содержанием азота. Для супесей Bodallin и Wodjil значение pH увеличилось и достигло пика на 42-й день инкубации, после чего последовало снижение, тогда как в песчаной почве Lancelin значение pH достигло максимума на 14-й день, а затем снизилось [70]. В другом исследовании инкубации [71] подзол с начальным pH 4,5 и камбизол с начальным pH 6,2 были дополнены остатками канолы, нута и пшеницы. Для всех остатков увеличение pH в умеренно кислом камбизоле было в шесть раз больше, чем в более кислом подзоле.Это достигло пика через 14 дней после применения и впоследствии уменьшилось. Однако в полевых исследованиях на тех же почвах [74] внесение остатков нута увеличивало pH почвы на 1,3 единицы в обеих почвах и достигало максимума через 3 месяца, тогда как остатки канолы увеличивали pH на 0,82 и 1,02 единицы в Подзолах и Подзолах. Камбизол, соответственно, и достиг максимального значения pH через 9 месяцев.

Подобно несгоревшим органическим материалам, сгоревшие или обугленные растительные остатки содержат большее количество щелочности из-за улетучивания органических компонентов в термических условиях, приводящих к концентрации щелочных компонентов.Фактическая щелочность зависит от типа используемой биомассы, их происхождения и температуры сгорания. Обгоревшие и обугленные формы органических материалов включают биоуголь и золу. Biochar представляет собой твердый продукт пиролиза, а зола представляет собой рыхлый порошкообразный материал, полученный путем сжигания. PH биоугля, полученного при 500–600 ° C, составлял 6,4–9,3 и демонстрировал сильную взаимосвязь с общей щелочностью (то есть органической и неорганической щелочностью) [75]. Неорганическая щелочность увеличивается с увеличением температуры пиролиза и с увеличением содержания двухвалентных катионов [75], поскольку органические компоненты улетучиваются во время пиролиза.Эта щелочность biochar нейтрализует кислотность и увеличивает pH почвы в зависимости от степени щелочности и буферной способности почвы [76]. Зола биомассы имеет значительную щелочность, которая часто выражается в процентах эквивалента карбоната кальция (% CCE). Он колеблется в пределах 17–95% [77, 78]. Как и в случае с biochar, температура горения влияет на щелочность биомассы, помимо ее типа и источника. Недавно Neina et al. (представлен) обнаружил, что зола от древесного угля имеет более высокие содержания CCE, pH и K, чем зола дров.В зависимости от подщелачивающей и буферной способности почвы, принимающей золу биомассы, повышение pH почвы может быть высоким или низким. Например, в двух ганских акрисолях зола биомассы, внесенная в почву в количестве 2,5 г · кг -1 , увеличила pH почвы примерно на 1 единицу после 12 недель лабораторной инкубации [79]. Это изменение pH в основном кратковременное из-за других биогеохимических процессов.

4. Выводы

В данном документе подчеркивается роль pH почвы как основной переменной почвы, которая имеет двунаправленную связь с биогеохимическими процессами в почве.Хотя в этой статье обсуждались не все биогеохимические процессы, они существенно влияют на здоровье почвы, доступность питательных веществ, загрязнение и потенциальные опасности загрязняющих веществ, а также их судьбу в пищевой цепи. Здесь нельзя упускать из виду подвижность вредных веществ в гидрологическом цикле из-за тесной взаимосвязи между почвой и водой. Таким образом, понимание этого может стать основой и руководством к решениям и выбору управления почвами, рекультивации, реабилитации и поддержания качества почвы.Наблюдаемые взаимосвязи между pH почвы и биогеохимией дают представление о будущих применениях для повышения урожайности определенных культур за счет повторного использования и доступности питательных веществ, что способствует росту сельскохозяйственных культур. Преходящий pH почвы ризосферы также может быть использован для увеличения доступности определенных питательных веществ в определенных почвенных условиях [80]. Что еще более важно, pH почвы может быть полезен для борьбы с загрязнением почвы за счет распределения и удаления вредных веществ из систем. Например, процессы минерализации и разложения, такие как минерализация C и N, а также разложение пестицидов, происходят между pH 6.5 и 8, в то время как максимальная деградация нефти и ПАУ происходит при pH от 7 до 9. Они, а также максимальные значения pH для различных микробных ферментов, могут быть использованы во многих стратегиях восстановления почвы, особенно при биоремедиации. В конечном итоге, pH почвы может широко применяться в двух широких областях, а именно: круговорот питательных веществ и питание растений и восстановление почвы (биоремедиация и физико-химическая реабилитация).

Конфликты интересов

Автор заявляет об отсутствии конфликта интересов относительно публикации этой статьи.

pH почвы и наличие питательных веществ для растений

Эта артикул о

  • Правый источник
  • Правильная скорость
  • Правильное время
  • Правильное место

pH почвы — это характеристика, которая описывает относительную кислотность или щелочность почвы. Технически pH определяется как отрицательное (-) значение по логарифму или по основанию 10 концентрации ионов водорода (H +).Чистая вода будет иметь pH, близкий к нейтральному, то есть от 10 до минус 7 концентрации ионов H + (10-7 [H +]). Эта концентрация выражается как 7. Любое значение выше 7 означает, что концентрация ионов H + ниже, чем при нейтральном pH, а раствор является щелочным и присутствует больше ионов гидроксила (OH-), чем ионов H +. Любое значение ниже 7 означает, что концентрация ионов H + выше, чем при нейтральном pH, и раствор является кислым. Почвы считаются кислыми при рН ниже 5 и очень кислыми при рН ниже 4. И наоборот, почвы считаются щелочными при рН выше 7.5 и очень щелочной при pH выше 8. Обычно значения pH почвы измеряются, когда 10 г высушенной воздухом почвы смешивают с 20 мл бидистиллированной воды или 20 мл 0,01 M раствора CaCl 2 , а pH измеряется с помощью соответствующего электрода, подключенного к pH-метру. Этот анализ почвы является регулярной частью большинства, если не всех протоколов испытаний почвы.

Доступность некоторых питательных веществ для растений в значительной степени зависит от pH почвы. «Идеальный» pH почвы близок к нейтральному, а нейтральные почвы считаются находящимися в диапазоне от слабокислого pH до 6.От 5 до слабощелочного pH 7,5. Было определено, что большинство питательных веществ для растений оптимально доступны для растений в диапазоне pH от 6,5 до 7,5, плюс этот диапазон pH, как правило, очень совместим с ростом корней растений.

Азот (N), калий (K) и сера (S) — основные питательные вещества для растений, на которые, по-видимому, в меньшей степени влияет pH почвы, чем на многие другие, но все же в некоторой степени. Фосфор (P), однако, подвержен прямому воздействию. Например, при щелочных значениях pH выше 7,5 ионы фосфата быстро реагируют с кальцием (Ca) и магнием (Mg) с образованием менее растворимых соединений.При кислых значениях pH ионы фосфата реагируют с алюминием (Al) и железом (Fe), снова образуя менее растворимые соединения. Большинство других питательных веществ (особенно микронутриентов), как правило, менее доступны, когда pH почвы выше 7,5, и фактически оптимально доступны при слабокислом pH, например От 6,5 до 6,8. Исключением является молибден (Mo), который, по-видимому, менее доступен при кислых значениях pH и более доступен при умеренно щелочных значениях pH.

В некоторых случаях в почву добавляют материалы для регулирования pH. В полевых условиях это чаще всего делается для кислых почв, чтобы повысить pH с 4,5 до 5,5 до 6,5 или приблизиться к нейтральному. Это достигается путем нанесения и включения известкования, часто тонкоизмельченного кальцитового известняка или доломитового известняка, который распределяется с помощью специальных разбрасывателей извести или центробежных разбрасывателей, оснащенных вибрационными системами для предотвращения закупоривания материала в бункерах разбрасывателей. Можно снизить pH почвы, используя жидкий кислотный раствор или тонкоизмельченный элементарный S, который окисляется до серной кислоты под действием почвы, населяющей S-окисляющие бактерии.Однако это редко делается в масштабе поля из-за высокой стоимости. Это чаще всего делается при производстве садоводства, когда отдельные контейнеры для растений или ограниченные площади (например, <10-20 акров) управляются для снижения pH для растений, адаптированных к кислой почве, таких как некоторые цветы, деревья и / или небольшие фрукты (например, черника и клюква). Важно отметить, что большинство текущих сельскохозяйственных культур будет постепенно снижать pH почвы, поскольку ионы H + высвобождаются и превращаются в нитраты почвенными микробами.Это особенно верно при внесении азотных удобрений, таких как безводный аммиак, сульфат аммония и мочевина.

Пытаетесь вы отрегулировать pH или нет, важно понимать другие методы увеличения доступности и использования добавленных питательных веществ. Это можно сделать различными способами для упомянутых выше питательных веществ, на которые неблагоприятно влияют экстремальные значения pH почвы, кислые или щелочные. Например, фторсодержащие удобрения можно вносить в посевной ряд или рядом с ним при посадке, чтобы облегчить поглощение фосфат-ионов корнями сельскохозяйственных культур в начале сезона, прежде чем дать им возможность вступить в реакцию с почвенными катионами, которые преобладают в кислых или щелочных условиях pH почвы.При щелочных значениях pH почвы фосфатные удобрения можно вносить полосами с удобрениями, которые генерируют ионизированную форму аммиака (NH 4 ). Это позволит слегка подкисить почву, прилегающую к полосе удобрений. Другой метод заключается в производстве гранул сложных питательных удобрений, содержащих азот, фосфор и даже элементарные серосодержащие удобрения, для внесения в щелочные почвы. Почва, прилегающая к гранулам, также будет слегка подкислена и позволит увеличить поглощение фосфора, когда корни сельскохозяйственных культур перехватят гранулы.Еще одним примером является внекорневое внесение растворимых соединений Fe-удобрений в Fe-дефицитные культуры, выращиваемые на почвах с высоким pH, где удобрения настолько быстро реагируют с почвой, что питательные вещества связываются и становятся недоступными для растений. Вот почему удобрения, вносимые в почву, часто не помогают устранить дефицит железа. Избегая почвы и применяя Fe к листьям, небольшое количество Fe, необходимого для растений, успешно вводится в урожай.

В следующий раз, когда у вас будут взяты пробы почвы на ваших полях, найдите время, чтобы отметить, какие значения pH указаны в ваших результатах. Полезно сравнить эти значения с предыдущими значениями pH теста почвы и определить, есть ли тенденция изменения pH почвы. Регулярно отслеживая значения pH (каждые 2–3 года) в поле, вы можете подумать о действиях по повышению pH почвы с кислых до почти нейтральных значений pH путем известкования. Повышение доступности питательных веществ и улучшение роста сельскохозяйственных культур могут быть достигнуты при добавлении известкования в чрезмерно кислую почву.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *