Гидромуфты и гидротрансформаторы
Автор: Юлиюс Мацкерле (Julius Mackerle)Источник: «Современный экономичный автомобиль» [1]
11633 1
Гидромуфта открыла путь к созданию автоматической коробки передач. Сама по себе она не может увеличивать передаваемый момент, но ее пробуксовка уменьшает рывки автомобиля при переключении передач.
Поскольку передаваемый момент при низкой частоте вращения быстро убывает по мере ее снижения, то при минимальной частоте вращения на холостом ходу двигателя гидромуфта выключена. В условиях городского движения при наличии гидромуфты не требуется постоянно включать и выключать передачу в коробке, а достаточно при включенной передаче «сбросить газ», т. е. отпустить педаль управления двигателем, а при новом разгоне – вновь лишь нажать на нее. Чтобы переход от выключенного положения гидромуфты при холостом ходе к режиму передачи ею максимального крутящего момента с малой пробуксовкой был по возможности коротким, между двумя колесами гидромуфты помещают отражающую пластину.
КПД гидромуфты зависит от величины ее буксования. Если пробуксовка гидромуфты составляет 40 %, то ее КПД равен лишь 60 %, и остальная энергия превращается в тепло, что приводит к росту расхода топлива. Но без буксования гидромуфта не может осуществлять передачу момента, так как только при пробуксовке жидкость в муфте приходит в движение. В оптимальных условиях КПД гидромуфты равен 97 %. Чтобы не вызывать увеличение расхода топлива на режимах движения, когда потребность использования сцепления отпадает, применяют также фрикционное сцепление, блокирующее работу гидромуфты.
Гидротрансформатор выполняет аналогичную гидромуфте функцию, отличаясь от нее тем, что между насосным и турбинным колесами в нем размещено также одно или более реактивных колес, соединенных с картером через муфту свободного хода. При необходимости увеличить момент реактивное колесо стопорится, в других случаях муфта свободного хода расцепляется и реактивное колесо вращается вместе с турбинным колесом гидротрансформатора. Под воздействием реактивных колес гидротрансформатор может увеличить момент и таким образом позволяет работать с меньшим количеством ступеней коробки передач. При высоких оборотах и небольшом буксовании гидротрансформатор работает как гидромуфта.
Зависимость КПД гидротрансформатора от степени его буксования изображена на рис. ниже, из которого видно, что если отношение частоты вращения турбинного колеса к частоте вращения двигателя nт/nд будет равно 0,65, то третье реактивное колесо выключается, а работают только два оставшихся реактивных колеса. При отношении этих частот вращения, равном 0,75, отключается второй реактивный элемент, а при 0,95 — первый, и далее гидротрансформатор работает как гидромуфта. Огибающая кривая дает суммарное значение КПД гидротрансформатора. При остановленном турбинном и вращающемся насосном колесах (100 %-ное буксование) коэффициент трансформации, характеризующий увеличение крутящего момента двигателя гидротрансформатором, составляет 2,15.
Схема (а) и характеристика (б) трехступенчатого гидротрансформатора: |
---|
1 – блокируемые муфты свободного хода; 2 – коэффициент трансформации M2/M1. |
Как видно из рис., потери в гидротрансформаторе весьма существенны и при его применении топлива расходуется больше, чем в случае обычной механической коробки передач. В автоматической планетарной коробке, которая расположена за гидротрансформатором, дополнительно возникают потери на привод масляных насосов, управление многодисковым сцеплением, трение масляной пленки между неподвижными и вращающимися деталями сцепления и тормозов и т. д. Все эти потери нагревают масло, которое следует охлаждать, а на это вновь затрачивается часть эффективной мощности двигателя. Общая длина планетарной коробки передач, расположенной по оси двигателя, включая длину размещенного перед ней гидротрансформатора, достаточно велика, и весь агрегат, имея большие размеры и массу, относительно дорого стоит. Поэтому возрастает интерес к созданию более современного типа гидротрансформатора или же бесступенчатой коробки передач без использования гидромуфты или гидротрансформатора.
Опубликовано 14.02.2014Читайте также
- Паровой двигатель
За время своего развития паровые машины значительно усовершенствовались, поэтому на них было обращено внимание при поиске замены двигателя внутреннего сгорания.
- Первый электромобиль в России – электромобили Романова
В 1889 году Ипполит Романов сконструировал первый российский электромобиль и хотел наладить городское электрическое сообщение. Но электромобили Романова не появились массово на улицах городов – мечте не суждено было сбыться.
Сноски
- ↺ Мацкерле Ю. Современный экономичный автомобиль/Пер. с чешск. В. Б. Иванова; Под ред. А. Р. Бенедиктова. — М.: Машиностроение, 1987. — 320 с.: ил.//Стр. 22 — 23 (книга есть в библиотеке сайта). –
Комментарии
Устройство и принцип действия
Гидравлические передачи в зависимости от принципа работы подразделяются на гидростатические и гидродинамические.
Гидростатические передачи работают на использовании принципа вытеснения или замещения небольших объемов жидкости при больших рабочих давлениях. В этих передачах скорость движения жидкости сравнительно невелика (не превышает 10 м/с), поэтому в них величина потенциальной энергии (энергии статического давления) значительно больше, чем величина кинетической энергии (энергии скоростного напора), что показано на рис. 15.1.
Гидростатические передачи применяются на ряде отечественных тепловозов в качестве привода вентилятора холодильника. Создать такие передачи большой мощности в настоящее время невозможно из-за технологических и конструктивных трудностей, связанных с обеспечением больших давлений при длительной эксплуатации, а также с изготовлением надежных гибких соединений трубопроводов, рассчитанных на высокие давления.
Гидродинамические передачи основаны на принципе использования кинетической энергии потока жидкости, циркулирующей по замкнутому контуру. Эти передачи получили преимуществен-
Рис. 15.1. Схема гидростатической передачи: 1 — ведущий вал; 2 — гидронасос; 3 — вспомогательный насос; 4 — клапан ограничителя давления; 5 — гидромотор; 6 — ведомый вал
ное распространение в качестве звена энергетической цепи тепловозов различной мощности, и их принято называть просто гидравлическими.
Конструктивно гидравлические передачи состоят из ряда узлов, основными из которых являются гидравлическая муфта и гидравлический трансформатор. Технические характеристики этих гидравлических элементов определяют все показатели и свойства гидравлической передачи.
Гидравлическая муфта. Гидравлической муфтой (рис. 15.2) называется устройство, обеспечивающее гибкое соединение ведущего и ведомого валов и передачу вращающего момента без изменения его по величине. По конструкции она представляет собой двухлопастную гидравлическую машину, состоящую из двух основных частей: насосного колеса, жестко связанного посредством ведущего вала с валом двигателя, и турбинного колеса, соединяемого с помощью ведомого вала и механических звеньев с движущими осями. Одно из рабочих колес, чаще всего турбинное, обхватывается кожухом, предназначенным для компоновки приборов питания (трубопроводов, клапанов) и уплотнения. Отличительной конструктивной особенностью обоих рабочих колес является наличие плоских радиальных лопаток. Лопатки сложного профиля применяются редко и только в муфтах специального назначения.
Рис. 15.2. Гидравлическая муфта: а — схема: 1 — турбинное колесо; 2 — кожух; 3 — ведомый вал, 4 — насосное колесо; 5 — ведущий вал; б — внешняя характеристика: лн, лт — частота вращения насосного и турбинного колес; Мн, Мт — момент вращения насосного и турбинного колес; 5″ — коэффициент проскальзывания турбинного колеса относительно насосного; Чм — КПД гидромуфты
Кромки лопаток рабочих колес насоса и турбины располагаются в непосредственной близости друг от друга с зазором, необходимым для обеспечения их свободного вращения и теплового расширения. Лопатки с примыкающими к ним частями корпуса колес образуют в совокупности пространство, называемое кругом циркуляции. В рабочем режиме круг циркуляции заполняется рабочей жидкостью.
При вращении насосного колеса жидкость, находящаяся в круге циркуляции, перемещается под действием центробежной силы от центра колеса к периферии, благодаря чему в потоке накапливается кинетическая энергия. Пройдя по каналам между лопатками, жидкость выбрасывается из насосного колеса, перемещается в осевом направлении, попадает на лопатки турбинного колеса и давит на них, заставляя колесо вращаться в сторону вращения насосного колеса. По мере перемещения по лопаткам турбины кинетическая энергия потока жидкости убывает, превращаясь в механическую энергию ведомого вала и частично в потери.
Круговое движение жидкости по лопаткам рабочих колес гидромуфты (циркуляция) становится возможным из-за разности давлений. Действительно, давление жидкости на выходе из насосного колеса больше, чем на входе в турбинное колесо, так как скорость вращения турбинного колеса всегда меньше скорости вращения насосного колеса.
Скорость циркуляции, т.е. скорость относительного движения потока жидкости по лопаткам, зависит от соотношения угловых скоростей вращения насосного и турбинного колес. Разность чисел оборотов насосного и турбинного колес называется скольжением.
Скольжение рабочих колес находится в обратной зависимости от их передаточного отношения, т.е. от отношения частоты вращения турбины к частоте вращения насоса. При отсутствии скольжения колес исчезнет перепад давлений и циркуляция жидкости прекратится, что прекратит передачу кинетической энергии с насосного колеса на турбинное, следовательно, вращающий момент будет равен нулю. Иная картина будет в случае, если турбинное колесо неподвижно, а насосное колесо вращается с нормальной скоростью (скольжение 100 %). Перепад давлений будет наибольший, также наибольшими будут скорость циркуляции жидкости и ее воздействие на лопатки турбинного колеса. Передаваемый вращающий момент будет иметь максимальное значение. При промежуточных значениях передаточного отношения гидромуфты скорость циркуляции жидкости и вращающий момент приобретают соответствующие промежуточные значения.
Из характеристик гидромуфты видно, что по своим энергетическим свойствам гидромуфта, отдельно взятая, не отвечает целям тяги. Это объясняется перегружающим воздействием на дизель и низким КПД ее в диапазоне невысоких частот вращения турбинного колеса. Гидромуфта рассчитывается на передачу нормального момента Мнорм и работу при высоких передаточных отношениях с КПД 0,95. 0,98. В этот режим она включается в качестве ступени скорости гидравлической передачи.
Гидравлические преобразователи (гидротрансформаторы). Гидротрансформатором называется устройство, обеспечивающее гибкое соединение валов и передачу мощности с ведущего вала на ведомый с преобразованием вращающего момента и изменением частоты вращения ведомого вала по сравнению с частотой вращения ведущего вала (рис. 15.3).
Гидротрансформатор отличается от гидромуфты наличием третьего неподвижного лопастного колеса, называемого направляющим аппаратом. Насосное колесо, закрепленное на валу, приводится во вращение от дизеля. Частота вращения насосного колеса и вращающий момент на нем равны или, в случае наличия входного редуктора между дизелем и гидротрансформатором, пропорциональны частоте вращения коленчатого вала дизеля и вращающему моменту на нем. Турбинное колесо соединяется с движущими колесами тепловоза посредством механических элементов — системы зубчатых колес и карданных валов. Следовательно, скорость движения и сила тяги тепловоза пропорциональны частоте вращения турбинного колеса и вращающему моменту на нем. Все три рабочих колеса имеют профилированные лопатки, т.е. лопатки, сечение которых имеет сложную гидродинамическую форму.
Лопатки рабочих колес размещаются так, что выходные кромки одних лопаток располагаются в непосредственной близости от
Рис. 15.3. Гидротрансформатор: а — схема: 1 — насосное колесо; 2 — турбинное колесо; 3 — кожух, 4 — направляющий аппарат; 5 — ведущий вал, 6 — внешняя характеристика: пк, пт — частота вращения насосного и турбинного колес; МИ, Мт — момент вращения насосного и турбинного колес; МИ0б — момент вращения насосного колеса с обгонной муфтой, т)„ — КПД насосного колеса, т)^ — КПД гидротрансформатора
входных кромок других лопаток. Между кромками лопаток смежных колес предусматриваются зазоры, необходимые для обеспечения свободного вращения и теплового расширения.
Принцип действия гидротрансформатора аналогичен принципу действия гидромуфты. Насосное колесо закручивает жидкость, создавая в ней запас кинетической энергии вращательного движения. Турбинное колесо, благодаря соответствующему профилю его лопаток, раскручивает жидкость. Запас кинетической энергии потока жидкости используется для преодоления внешних сил сопротивления, приложенных к ведомому валу, а значит и к движущим осям тепловоза.
Наличие в круге циркуляции неподвижных лопаток направляющего аппарата придает гидротрансформатору свойство автоматически изменять вращающий момент на турбинном колесе в зависимости от частоты вращения последнего, т. е. от скорости движения тепловоза. Преобразующее свойство гидротрансформатора оценивается коэффициентом трансформации момента К= Мт/Мн. Для тепловозных трансформаторов значение Л» составляет 3 и более.
По конструктивным особенностям гидротрансформаторы подразделяются:
на одноступенчатые и многоступенчатые, если в круге циркуляции имеется соответственно один или несколько рядов (ступеней) лопаток турбинного колеса;
одноциркуляционные и многоциркуляционные, если в их состав входит соответственно один или несколько кругов циркуляции;
простые и комплексные, если они не обладают или, наоборот, обладают свойством гидромуфты.
В отечественном тепловозостроении имеются примеры выполнения и применения всех названных выше конструктивных видов гидротрансформаторов. Наряду с разделением гидротрансформаторов по конструктивным особенностям существует разделение их по так называемому свойству прозрачности: непрозрачные и прозрачные. Под прозрачностью гидротрансформатора понимается его свойство оказывать влияние на режим нагрузки дизеля при изменении внешнего сопротивления движению поезда.
В непрозрачном гидротрансформаторе момент насосного колеса при постоянной частоте вращения не изменяется при всех значениях момента турбинного колеса и его частоте вращения. Это свидетельствует о том, что изменение внешней нагрузки не оказывает влияния на нагрузку дизеля. Если же момент насосного колеса изменяется с изменением момента турбинного колеса, то характеристика гидротрансформатора называется прозрачной.
В тепловозных гидропередачах применяют непрозрачные или близкие к ним гидротрансформаторы, так как они обеспечивают постоянный режим работы дизеля при изменении сопротивления движению поезда.
Из характеристики гидротрансформатора видно, что отдельно взятый гидротрансформатор не отвечает требованиям, предъявляемым к тепловозной передаче. Если при трогании и разгоне турбинного колеса КПД гидротрансформатора низкий, то этот недостаток окупается реализацией необходимых тяговых свойств. Такой режим составляет относительно небольшой период времени работы гидротрансформатора.
Режим высокой частоты вращения турбинного колеса, характеризуемый также низким КПД, неприемлем для длительной работы тепловоза, поэтому гидротрансформаторы применяются в качестве ступеней скорости гидропередачи. Скоростной диапазон работы каждой ступени определяется по передаточным отношениям гидротрансформатора, при которых его КПД не ниже 80%.
Комплексные гидротрансформаторы. Стремление реализовать положительные свойства гидротрансформатора и гидромуфты в одном гидроаппарате привело к созданию комплексных гидротрансформаторов. Комплексный гидротрансформатор представляет собой устройство, обеспечивающее автоматический переход с режима гидротрансформатора на режим гидромуфты и наоборот в зависимости от условий работы.
Особенностью конструкции комплексного гидротрансформатора (рис. 15.4) является то, что его направляющий аппарат, выполненный в виде одного или двух рядом стоящих лопастных колес, укрепляется на неподвижном валу с помощью муфт свободного хода, называемых автологами. Муфты свободного хода представляют собой различного рода храповой механизм. В тепловозных гидротрансформаторах применены роликовые муфты свободного хода. Неподвижная, жестко закрепленная внутренняя обойма охватывается наружной обоймой, которая жестко связана с направляющим аппаратом. Наружная обойма имеет пазы с наклонными плоскостями; между внутренней обоймой и наклонными плоскостями обоймы установлены ролики, которые поджимаются пружинами. В зависимости от изменения направления потока масла, прошедшего через турбинное колесо, и, следовательно, от того, с какой стороны лопатки направляющего аппарата давит поток масла, направляющий аппарат либо вращается, либо стоит на месте.
Полное заклинивание обеих ступеней направляющего аппарата происходит при работе гидротрансформатора с малыми передаточными отношениями (ят/ян, здесь пг и пИ — соответственно частота вращения турбинного и насосного колес), когда направление абсолютной скорости выхода жидкости из турбинного колеса таково, что обе ступени направляющего аппарата отжимаются потоком в сторону, противоположную направлению вращения турбинного колеса. Колеса направляющего аппарата заклиниваются роликами муфты свободного хода, тем самым обеспечивая режим работы гидротрансформатора.
Рис. 15.4. Комплексный гидротрансформатор: а — схема гидротрансформатора: 1 — насосное колесо; 2, 3 — ступени направляющего аппарата; 4 — неподвижный вал; 5- автологи; 6 — турбинное колесо; 6 — схема автолога: 1 — внутренняя обойма; 2 — наружная обойма; 3 — лопатки направляющего аппарата; 4 — пружина; 5 — ролик
По мере увеличения передаточного отношения, что соответствует разгону тепловоза, изменяется направление абсолютной скорости выхода жидкости из турбинного колеса. При определенном передаточном отношении воздействие потока на лопатки направляющего аппарата совпадет с направлением его возможного вращения на муфтах свободного хода.
При дальнейшем увеличении передаточного отношения колесо направляющего аппарата первой ступени начинает вращаться в одну сторону вместе с турбиной, а гидротрансформатор переходит на работу с одной неподвижной ступенью направляющего аппарата. Этому режиму соответствует участок его характеристики, на котором КПД возрастает, а момент Мт изменяется более плавно.
При большом значении передаточного отношения направление скорости выхода жидкости из турбинного колеса совпадает с направлением выходных кромок лопаток второй ступени направляющего аппарата, муфта свободного хода расклинивается давлением потока, а колесо направляющего аппарата начинает вращаться вместе с турбинным колесом. Гидротрансформатор переходит на режим гидромуфты. На этом участке характеристики происходит дальнейшее увеличение КПД и снижение моментов Мт = = Мн с ростом передаточного отношения.
Таким образом, последовательное автоматическое расклинивание двух ступеней направляющего аппарата, установленных на муфтах свободного хода, позволяет реализовать в одном гидроаппарате три режима: два режима гидротрансформатора и режим гидромуфты. Каждому режиму соответствует определенный участок характеристики. Как видно на характеристике, диапазон работы гидротрансформатора с высоким КПД за счет этого расширяется.
Комплексные гидротрансформаторы по сравнению с простыми имеют более сложную конструкцию. Надежность их в длительной эксплуатации снижается за счет трущихся элементов муфты свободного хода. В тепловозных гидропередачах комплексные гидротрансформаторы находят ограниченное применение.
Рабочие жидкости. Надежность и экономичность работы гидропередачи зависят от сорта и качества рабочей жидкости. Объемная масса жидкости влияет на размеры гидропередачи. Жидкости большей объемной массы позволяют создавать гидропередачи меньшего размера и массы. В гидравлических передачах в качестве рабочей жидкости может служить турбинное, веретенное масло или их смесь, которая одновременно является смазкой для трущихся частей. Минеральное масло, применяемое в качестве рабочей жидкости для тепловозных гидропередач, должно удовлетворять следующим требованиям.
1. Масло должно иметь определенную вязкость, при которой достигаются наименьшие потери и необходимые смазочные свойства. В градусах по шкале условной вязкости при температуре 50 «С масло должно иметь 2. 3 °ВУ. Вязкость масла характеризуется также кинематическим коэффициентом вязкости, измеряемым в сто-ксах (1 см2/с). В качестве основной характеристики в ГОСТах его обычно указывают в сантистоксах (сотая доля стокса или 10~2 см2/с). Вязкость зависит от температуры. Существуют формулы и таблицы для пересчета градусов условной вязкости (°ВУ,) в единицы кинематической вязкости при различной температуре.
2. Температура замерзания масла должна быть возможно более низкой, а температура вспышки ее паров — возможно более высокой. Для тепловозных гидропередач рекомендуется масло с температурой вспышки не ниже +160 ° С. Вязкость масла в интервалах крайних состояний не должна резко изменяться.
3. Масло должно быть химически чистым и однородным. Не допускается наличие в масле кислот и щелочей, так как они способствуют его разложению и вызывают коррозию деталей. В масле не должно содержаться мылообразующих жиров, которые служат причиной устойчивого пенообразования, а значит и снижения передаваемой мощности. Для борьбы с пенообразованием в масло вводят специальные жидкости, точно так же для предотвращения кислотности к маслу добавляют антиокислители.
4. Масло должно быть механически чистым и однородным. Содержание асфальтовых и смолистых веществ в масле нежелательно, так как они при высоких температурах выделяются и оседают на стенках трубопроводов, тем самым нарушая нормальную работу гидравлических элементов автоматики. Механические примеси в масле вызывают засорение отверстий в органах управления и интенсивное изнашивание подшипников. Поэтому в гидропередачу подают масло, прошедшее через фильтры.
⇐ | Основные неисправности и ремонт аккумуляторных батарей | | Устройство и ремонт тепловозов | | Устройство гидравлических передач отечественных тепловозов | ⇒
Гидротрансформатор — ВикипедияМодель гидротрансформатора в разрезеГидротрансформа́тор — гидравлическое устройство, служащее для преобразования (изменения) крутящего момента от двигателя к трансмиссии. В отличие от гидромуфты гидротрансформатор способен увеличивать момент на ведомом валу в зависимости от действующего на него сопротивления. Является одним из элементов гидромеханических трансмиссий, в составе которых применяется на транспортных средствах с двигателем внутреннего сгорания от легковых машин до тепловозов. Гидротрансформаторы получили широкое распространение в автомобильной технике, обеспечивая плавное трогание автомобиля с места и уменьшая передачу ударных нагрузок от трансмиссии на вал двигателя. Чаще всего используется с АКП или вариаторами. Основные параметры гидротрансформатора[править | править код]
Любой гидротрансформатор состоит из:
При работе гидротрансформатора жидкость разгоняется насосным колесом и движется по сложной траектории, которую можно разделить на две простые составляющие: относительную (скорость направлена радиально от оси к периферии насосного колеса и от периферии к оси турбинного колеса), переносную (вращение вместе с насосным и турбинным колёсами). В зависимости от соотношения этих составляющих гидротрансформатор может работать на разных режимах. Различают три режима работы гидротрансформатора:
Описание принципа работы гидротрансформатора можно посмотреть в этом видео Гидротрансформатор АКПП. Вся правда о принципе работы. Гидротрансформатор в разрезе. Слева виден «бублик» насоса и турбины, между ними виден светло-серый реактор и его подшипник с обгонной муфтой. Справа сцепление блокиратора.Все детали собраны в общем корпусе, расположенном, как правило, на маховике двигателя машины. Хотя, бывают и исключения. Например, в трансмиссиях автобуса ЛиАЗ-677 и трактора ДТ-175С передача крутящего момента от двигателя к гидротрансформатору происходит через карданный вал. Гидротрансформатор наполнен маслом, которое активно перемешивается при его работе. Насосное колесо жёстко связано с корпусом гидротрансформатора, при вращении вала двигателя оно создаёт внутри гидротрансформатора поток масла, который вращает колесо статора (реактора) и турбину. Конструктивным отличием гидротрансформатора от гидромуфты является наличие статора (реактора). Статор установлен на обгонной муфте. При значительной разнице оборотов насоса и турбины статор (реактор) автоматически блокируется и передаёт на насосное колесо больший объём жидкости. Благодаря статору (реактору) происходит увеличение крутящего момента до трёх раз[4] при старте с места. Турбина жёстко связана с валом АКП. Благодаря тому, что передача крутящего момента внутри гидротрансформатора происходит без жёсткой кинематической связи, исключаются ударные нагрузки на трансмиссию и автомобиль приобретает большую плавность хода. Негативным эффектом гидротрансформатора является «проскальзывание» турбинного колеса по отношению к насосному — это приводит к повышенному выделению тепла (в некоторых режимах гидротрансформатор может выделять больше тепла, чем сам двигатель) и увеличению расхода топлива. Блокировка гидротрансформатора[править | править код]Для повышения топливной экономичности в конструкцию современных гидротрансформаторов вводится механизм блокировки, позволяющий жёстко связать насос и турбину. При заблокированном гидротрансформаторе АКП работает в режиме жёсткой кинематической связи двигателя и трансмиссии аналогично МКП. В электронно-управляемых АКП момент включения блокировки определяет компьютер, поэтому она может быть включена практически в любой момент согласно управляющей программе. АКП, произведённые в XX веке, включали блокировку гидротрансформатора только при достижении достаточно большой скорости (более 70 км/ч). Современные АКП включают блокировку гидротрансформатора с достаточно низких скоростей (от 20 км/ч), что позволяет экономить топливо не только при движении по шоссе, но и при городской эксплуатации автомобиля. Также блокировка гидротрансформатора применяется, подобно МКПП, для торможения двигателем. В этом случае подача топлива в двигатель прекращается на время блокировки, вал двигателя вращается за счёт движения автомобиля. На тракторах блокировка гидротрансформатора используется для запуска двигателя трактора «с толкача» либо когда трактор работает в стационарном режиме. Необходимо отметить, что хотя блокировка гидротрансформатора приносит ощутимую экономию топлива, она имеет некоторые недостатки:
Гидротрансформаторы широко используются на транспорте: от легковых автомобилей и лёгких вилочных погрузчиков до сверхтяжёлых специальных грузовых шасси. Чаще всего работают с планетарными коробками передач, хотя встречаются и сочетания с обычными двух- и трёхвальными конструкциями. Популярность снабжённых гидротрансформатором машин в зависимости от региона может очень сильно различаться. Так, на конец XX века в Западной Европе около 20 % легковых автомобилей имели гидротрансформатор. Подавляющее большинство гидротрансмиссий средней и большой мощности в Европе разработано и строится фирмой Voith в Германии. В то же время в США их доля составляла порядка 80 %. В последние годы из легкового автомобилестроения гидротрансформаторы вытесняются автоматизированными или «роботизированными» механическими коробками передач. В СССР, а позднее в СНГ использовались в гидродинамических трансмиссиях автомобилей «Волга», «Чайка» и ЗИЛ, многоцелевых тягачах МЗКТ и КЗКТ, семействе БелАЗ, автобусах ЛАЗ-695Ж и ЛиАЗ-677, на тракторах ДТ-175С и Т-330 и на ряде маневровых тепловозов (ТГМ3, ТГМ6, ТГК2) и магистральных локомотивов — ТГ102, ТГ16, ТГ22. Кроме того, гидротрансформаторы используются в трансмиссиях некоторых типов подъёмных кранов и экскаваторов с канатным приводом рабочих органов, в приводах рудничных и карьерных ленточных конвейеров. Также гидротрансформаторы устанавливались в привод гребных винтов самого мощного в СССР речного буксира-толкача Маршал Блюхер, что позволяло двигателям теплохода-гиганта эффективно работать на малых скоростях без применения гребных винтов регулируемого шага (реализация которых на речных судах весьма затруднительна). В системах объёмного гидропривода встречаются агрегаты, носящие название гидравлических трансформаторов, но не имеющие по конструкции ничего общего с гидродинамическими трансформаторами. Пример — агрегат НС53, стоящий на самолёте Ан-124 «Руслан» и некоторых других, состоит из двух одинаковых гидромашин (мотор-насосов) с общим валом, каждая из которых подключена к своей автономной гидросистеме. В какой из систем больше давление — машина той системы вращает вал и передаёт механическую энергию другой машине, которая создаёт давление в своей системе. Такая конструкция позволяет передавать энергию из системы в систему без обмена жидкостью, что при разгерметизации или загрязнении одной гидросистемы исключает отказ другой. На самолётах Airbus аналогичный агрегат называется power transfer unit (PTU).
ru.wikipedia.org назначение, устройство и принцип работыЧем дальше мы изучаем устройство автомобиля, тем больше возникает вопросов. Сегодня у нас на очереди гидротрансформатор. В этой статье мы разберемся что это, его основное предназначение, устройство и принцип работы. Погнали… Назначение гидротрансформатораБольшинство современных коробок «автоматов» совмещены с гидротрансформатором, основное назначение которого передать вращение вала двигателя на вал коробки. Гидротрансформатор является самостоятельным агрегатом, но АКПП не способна работать без него. Цель разработки этого узла — сделать вождение более простым и комфортным за счет отсутствия необходимости пользоваться педалью сцепления. Устройство и принцип работы понять не сложно благодаря простоте конструкции. Расположение гидротрансформатораГидравлический трансформатор в коробке «автомат» является аналогом сцепления, работающим автоматически. Этот узел нужен для:
Из-за характерного внешнего вида автомеханики этот агрегат часто называю «бубликом». Он тесно связан с коробкой, из которой получает трансмиссионную жидкость, необходимую для работы. Устройство гидротрансформатораГидротрансформаторы устанавливаются на легковые и грузовые машины, автобусы, тракторы, спецтехнику вместе с коробкой автомат (реже с вариаторной коробкой). По конструкции это гидравлическая муфта со статором. Устройство гидротрансформатора: 1 — блокировочная муфта; 2 — турбинное колесо; 3 — насосное колесо; 4 — реакторное колесо; 5 — механизм свободного хода.Гидротрансформатор состоит из:
Устройство лучше всего рассматривать в разрезе, так как в собранном виде корпус запаян. По краям располагаются турбинное и насосное колесо, между ними реакторное (реактивное). Турбинное колесо связано с валом коробки, насосное с коленвалом двигателя. Реакторное колесо с лопастями особой геометрии установлено на муфту, которая вращается лишь в одном направлении. Трансформатор заполнен трансмиссионной жидкостью, которая во время работы активно циркулирует. Принцип работы гидротрансформатораПринцип работы сравнительно простой, и наглядно показан на видео-уроке, ниже.
Блокировка гидротрансформатора (ГДТ)Гидротрансформатор важен для коробки до достижения определенного показателя скорости, при которой насосное и турбинное колесо вращаются с одинаковой скоростью, вращение реактора обеспечивает муфта. В результате все колеса вращаются вместе, крутящий момент перестает увеличиваться. В этом случае передача крутящего момента через жидкость не целесообразна. В этом случае, на современных гидротрансформаторах электроника соединяет входной и выходной валы ГДТ, блокирует бублик, и для передачи момента включается жесткая сцепка. При такой блокировке существенно экономится расход топлива. Устройство гидротрансформатора с муфтой блокировкиТакже на современных авто, блокировка включается на любых передачах и даже для торможения двигателем. Делается это для эффективного и динамичного разгона и торможения автомобиля. Схема блокирующего устройства простая. На входном и выходном валах есть система фрикционных дисков, которые в определенный момент, после команды блока управления, специальный клапан прижимает их друг к другу. Крутящий момент начинает передаваться без участия жидкости. Неисправности гидротрансформатора, их причиныГидротрансформатор считается неразъемным узлом, но в мастерских сварочный шов срезают, после ремонта «бублик» сваривают. ГДТ устроен так, что все поломки условно можно разделить на 2 группы:
Признаков неисправности много:
Причины проявления симптомов:
В автомастерскую следует обращаться при проявлении любого из симптомов. После диагностики будет проведен ремонт, если восстановление невозможно, ГДТ заменят. В противном случае не исключена вероятность выхода из строя коробки. Самостоятельно провести ремонт гидротрансформатора сложно из-за герметичного корпуса. Чтобы заменить детали, его необходимо разрезать, потом запаять, что в бытовых условиях сделать практически невозможно. Преимущества и недостатки гидротрансформатораНа автомобилях с гидротрансформаторами устанавливаются менее мощные двигатели, что позволяет сэкономить при покупке и на топливе. Но как и все агрегаты ГДТ имеет свои плюсы и минусы. К преимуществам можно отнести:
Недостатки гидравлических трансформаторов:
ЗаключениеИсходя из устройства и принципа работы гидротрансформатора можно сделать вывод, что срок службы можно продлить, если использовать качественную трансмиссионную жидкость, своевременно менять не только ее, но и сальники, прокладки, фильтр. Свое назначение этот узел выполняет дольше при регулярной диагностике и обслуживании. vaznetaz.ru принцип работы, бублик в АКПП, схемаГидротрансформатор АКПП (ГДТ) — элемент трансмиссии, расположенный между двигателем и механизмом переключения передач. Агрегат работает по закону гидромеханики, и является частью гидросистемы АКПП. Узел требует регулярного техобслуживания. Чтобы его починить, придется обращаться в сервис. Устройство гидротрансформатора АКППЧто такое гидротрансформатор в АКПП или «бублик», как его называют механики? ГДТ — это гидропривод, который связывает двигатель и автомат без жесткого соединения. Играет роль сцепления в аналогии с МКПП. Гидроприводы бывают двух видов: гидромуфта и гидротрансформатор. Разница между ними заключается в возможности трансформатора преобразовывать крутящий момент. В то время как гидромуфта может только передавать. «Бублик» АКПП работает в обоих режимах с автоматическим переключением, поэтому его можно назвать гибридным агрегатом. Для чего в АКПП нужен гидротрансформатор? Узел имеет несколько назначений:
Устройство гидротрансформатора АКПП основано на законах гидравлики. Механическая сила двигателя переходит в «бублик» и превращается в гидравлическую энергию за счет движения потока жидкости в полости ГДТ. Возникает давление и кинетическая энергия, которые заставляют вращаться вал трансмиссии. А от него крутящий момент переходит в планетарный механизм переключения передач. В теории АКПП могла бы состоять только из гидротрансформатора. Но на больших скоростях его КПД сильно снижается. Передаточное отношение «бублика» ограничено. Он не может обеспечить движение задним ходом или достаточное количество передач. Поэтому в АКПП за гидротрансформатором устанавливают планетарный редуктор, который способен получить любое передаточное число в заданном диапазоне. Одним из передовых разработчиков восьми скоростных коробок передач с гидротрансформатором является немецкая компания ZF. Высокотехнологичные трансмиссии этого производителя устанавливают в автомобилях Jeep, BMW, Volkswagen, Audi, Jaguar, Cadillac, Infinity. Описание конструкции гидротрансформатораГидротрансформатор расположен в корпусе АКПП и соединен с масляным насосом через входной вал трансмиссии. С противоположной стороны «бублик» крепится к маховику двигателя через резьбовые бобышки. Детали гидротрансформатора АКПП находятся в герметичном кожухе, где погружены в жидкость ATF. Из-за тороидальной формы корпуса гидротрансформатора его и прозвали «бубликом». Чтобы добраться до начинки, нужно аккуратно разрезать сварной шов по экватору кожуха. В разрезе гидротрансформатор АКПП представляет собой набор лопастных колес и муфт, установленных на одной оси:
Насосное колесо приварено к крышке корпуса, который соединяется с коленчатым валом двигателя. Турбинное колесо конструктивно похоже на насосное и установлено напротив с небольшим зазором. Турбина жестко связана с входным валом трансмиссии. Между насосом и турбиной стоит реактор. Он зафиксирован на муфте свободного хода, которая крепится на втулке входного вала. Муфта блокировки находится за турбиной. На кинематической схеме изображено, как расположены основные части гидротрансформатора, и показана траектория движения потока жидкости. Конструктивно гидротрансформатор АКПП представляет собой устройство прямого хода, когда лопастные колеса заставляют жидкость циркулировать в таком порядке: насос — турбина — реактор — насос.
Составные части гидротрансформатораОснову насосного и турбинного колес гидротрансформатора составляет чаша, отлитая из легкого сплава. На внутренней и наружной поверхности чаши вырезаны пазы, между которыми расположены лопатки. Лопатки изготовлены штамповкой и соединены между собой торическим диском с помощью подгибных усиков. Дополнительно лопатки на чаше застопорены кольцом. Кривизна чаши и сложная форма лопаток рассчитаны под требование увеличить эффективность циркуляции жидкости. Таким образом, конструкция колес обеспечивает необходимую скорость и направление движения масла. Турбинное колесо опирается на вал посредством ступицы и подшипников скольжения или качения. Подшипник воспринимает радиальные и осевые нагрузки. Ступица насоса обычно используется для привода масляного насоса, расположенного за гидротрансформатором. Привод срабатывает при заходе торцевых шлицев ступицы в соответствующие пазы ведущей шестерни насоса. Реактор представляет собой 2 металлических кольца разных диаметров. Между кольцами приварены лопасти под заданным углом наклона. Окно лопатки реактора со стороны турбины шире, чем со стороны насоса. Это решение позволяет создавать необходимое давление жидкости. Все рабочие механизмы размещенные в корпусе бубликаРеактор установлен на муфте свободного хода роликового типа. Муфта состоит из внешней и внутренней обоймы, между которыми находятся ролики и стопорные элементы. Внутренняя обойма зафиксирована на валу, а внешняя соединена с реактором. Когда ролики свободно перекатываются — обоймы вращаются независимо. При стопорении роликов пружинами обоймы сцепляются и могут двигаться только в направлении вала. Обгонная муфта обладает высокой нагрузочной способностью и износостойкостью Для увеличения КПД и экономичности «бублика» в АКПП в конструкцию введена муфта блокировки. В ее состав входят: корпус, поршень с фрикционным диском и ступица. Корпус выполнен в виде диска с пазами, в которых установлены пружины. Они выполняют роль демпфера крутильных колебаний. Поршень представляет собой круглую металлическую плиту с приклеенным фрикционным диском со стороны корпуса ГДТ. В автоматах с 6 ступенями муфта блокировки гидротрансформатора может работать в трех состояниях: разомкнутом, с проскальзыванием и замкнутом. Режим зависит от включенной передачи, нагрузки двигателя и скорости автомобиля. Обычно при разгоне блокировка сначала работает с регулируемым проскальзыванием, а потом замыкается. Принцип работы гидротрансформатораПринцип работы гидротрансформатора АКПП основан на преобразовании и передаче крутящего момента от двигателя к трансмиссии через работу жидкости. Производитель подбирает ATF по вязкости, допуску на нагрузку двигателя, количеству присадок. Поэтому от рабочих свойств масла зависит качество работы «бублика» и всей АКПП. С запуском двигателя начинает работать насосное колесо и масляный насос. В гидротрансформатор попадает масло АКПП. Под действием центробежной силы жидкость от насосного колеса захватывается из центральной оси и нагнетается лопастями к верхнему краю по часовой стрелке. Оттуда масло перебрасывается на верхние лопатки турбинного колеса. Давление «толкает» их, заставляя турбину вращаться. Под действием центростремительной силы ATF от верхней границы турбины переходит к центру, усиливая вращение. Происходит трансформация крутящего момента. Чем выше частота оборотов коленчатого вала, тем сильнее раскручивается турбина. Жидкость от лопаток турбины движется против часовой стрелки и возвращается к насосному колесу. При этом, давление масла противодействует движению насоса, затормаживая его. Прекращается усиление крутящего момента. С этого момента АКПП работает без гидротрансформатора: он перешел в режим гидромуфты. Для предотвращения торможения между колесами установлен реактор. Его задача — перенаправить поток жидкости от турбины в направление движения насосного колеса. Кинетическая энергия масла турбины расходуется на увеличение частоты вращения насоса. Таким образом, реактор помогает двигателю вращать насос или гидротрансформатор в целом, усиливая крутящий момент. Режимы работыИзменение гидродинамической передачи в гидротрансформаторе обеспечивается установкой реактора на обгонную муфту. Это позволяет «бублику» автоматически переключаться в режим гидромуфта и гидротрансформатор. В задачи обгонной муфты входит:
Реактор свободно вращается, пока разница между скоростями насосного и турбинного колес не достигает предела. Тогда обоймы муфты стопорятся. Реактор блокируется. Через лопасти реактора со стороны турбины проходит масла больше, чем выходит к насосу. Скорости колес выравниваются. Объем входного потока жидкости на реакторе совпадает с выходным, и муфта освобождает ректор. Так гидротрансформатор снова превращается в гидромуфту. Проскальзывание гидротрансформатораПри большой разнице частот вращения насосного и турбинного колес происходит их пробуксовка. В ГДТ АКПП этот эффект называется проскальзыванием. Жидкость ускоряется и быстро нагревается.
Чтобы повысить экономичность «бублика» в АКПП, инженеры установили муфту блокировки. Она устраняет проскальзывание ГДТ и обеспечивает режимы работы:
КПД гидротрансформатора при включении блокировки достигает 90%. Чтобы увеличить показатель до 97%, для управления муфтой в схему включили клапан с электронным управлением. В некоторых моделях АКПП блокировка включается уже на 2 передаче. Блокировка гидротрансформатора АКППМуфта является гидроуправляемой и работает по сигналу золотниковых клапанов, которые приводятся в действие давлением жидкости. Трансмиссионное масло поступает в полость между кожухом «бублика» и поршневой плитой, а затем в полость турбины. Фрикционный диск не касается крышки ГДТ. Крышка работает со свободным скольжением. Когда давление в полостях равны, муфта отключена. По сигналу из гидроблока клапан переключает контур движения масла. Давление жидкости передается к поршню со стороны турбины. В камере между поршнем и крышкой «бублика» стравливается давление. Жидкость сливается через канал. Давление со стороны турбины заставляет поршень сместиться в сторону кожуха. Муфта плавно включается. Поршневая плита вибрирует относительно ступицы, пружины на крышке блокировочной муфты деформируются. Пружинный демпфер поглощает колебания, передавая их на вал гидротрансформатора. Трение между фрикционом и кожухом растет. В результате гидротрансформатор АКПП блокируется. Между валом двигателя и турбиной установлена жесткая связь. Режим блокировки обеспечивает спортивные характеристики автомобиля с плавным переключением скоростей в АКПП. За динамичность, комфорт и экономичность приходится платить снижением надежности и срока службы ГДТ. При жесткой сцепке двигатель и коробка подвержены ударным нагрузкам, поскольку жидкость «бублика» не гасит удары и вибрации. Из-за высоких скоростей быстро истирается фрикцион, загрязняя масло абразивом. В результате ресурс АКПП снижается. Управление ГДТСовременные гидротрансформаторы АКПП находятся под управлением электронного модуля (ТСМ). Он собирает и анализирует информацию с датчиков давления, скорости вращения вала трансмиссии и других. Затем формирует импульсы, которые передаются на соленоиды в гидроблоке. Оттуда запускается алгоритм управления датчиками и клапанами. Про масло АКППРабочее тело гидротрансформатора сильно нагревается. Для охлаждения масло покидает полость «бублика» и проходит в сливной клапан. Оттуда жидкость под давлением попадает в распределительный клапан. Если датчики регистрируют повышение температуры, масло отправляется в радиатор АКПП. Охлажденная жидкость переходит в масляный насос через регулятор давления. Эффективность ГДТРаботу гидротрансформатора в АКПП оценивают по:
Трансформация Кт зависит от диаметра «бублика», плотности масла АКПП и крутящих моментов на колесах. Максимальное значение Кт=2,5—3,0 достигается, когда турбина неподвижна. Чем выше передаточное отношение, тем ниже коэффициент трансформации. В режиме гидромуфты крутящие моменты на валах колес равны, поэтому трансформации не происходит Кт=1. КПД гидротрансформатора зависит от соотношения мощностей, подаваемых к турбине и насосу. Показатель может достигать 97% в режиме гидромуфты, когда передаточное отношение оптимально — 0,7—0,8. В среднем КПД составляет 70—80%. Коэффициент прозрачности П определяет, насколько ГДТ нагружает двигатель в момент изменения режима работы турбины. Для определения прозрачности нужно соотнести моменты насосного колеса при остановленной турбине и при трансформации Кт=1. При П=1 гидротрансформатор непрозрачен. Крутящий момент турбины не влияет на работу двигателя, который находится в постоянном нагрузочном режиме. У прозрачного ГДТ П>1. Изменение нагрузки на турбинном колесе отражается на мощности двигателя. Прозрачность позволяет использовать тяговые характеристики мотора для улучшения динамики автомобиля. Признаки неисправностиО проблемах в гидротрансформаторе сигнализирует быстрое потемнение масла после замены. Автомобиль может расходовать больше топлива и дергаться при спокойном движении. Другие признаки можно распознать по ощущениям, слуху и запаху.
Обнаружение симптомов не всегда указывает на проблему в гидротрансформаторе, поскольку причина может скрываться и в других частях коробки. Диагностика гидротрансформатора поможет определить причину и характер поломки в АКПП. Мастер автосервиса проводит проверку по такому алгоритму:
Предварительный диагноз можно поставить и самостоятельно. Для этого нужно изучить мануалы, устройство и особенности своей АКПП. Что в гидротрансформаторах ломается чаще всегоМуфта блокировкиНеисправности в гидротрансформаторе чаще всего возникают из-за проскальзывания или трения муфты блокировки. Фрикционный диск истирается, отслойки материала и клей попадают в масло. В результате жидкость АКПП загрязняется и перегревается. Повышается износ втулок и подшипников. Неоднородное истирание фрикциона в ГДТ АКПП становится причиной появления вибраций при блокировке муфты. Сальники, подшипники, втулки бьются, что ведет к ускорению износа «бублика». Страдает и масляный насос, что ведет к масляному голоданию всей коробки. УплотнителиДругим «слабым местом» гидротрансформатора являются сальники и уплотнители. Детали изготавливают из тефлона или пластика. Они способны пройти 200 000 км. Но из-за агрессивного вождения или неудачной конструкции АКПП, уплотнители начинают протекать, быстрее стареют. Когда сальники истончаются, от них отрываются крупные фрагменты, которые засоряют масло. Обгонная муфтаВ редких случаях бывает неисправна обгонная муфта. Ролики изнашиваются, начинают проскальзывать или заклинивать. В результате муфта не может блокировать реактор. ГДТ не перейдет в режим гидромуфты. Из-за чрезмерной нагрузки обойму муфты может провернуть, а металлические продукты износа попадут в масло. Как влияет на АКПП«Заболевания» гидротрансформатора отражаются на других узлах КПП, выводят их из строя. «Бублик» — главный «загрязнитель» и «нагреватель» АКПП. Масло разносит по коробке фрикционную и металлическую грязь. Забивает шлаками каналы гидроблока, соленоиды, клапаны, датчики. В результате переключение передач происходит с задержкой, растет расход топлива, истираются детали автомата. Поэтому при появлении посторонних звуков, вибраций в автоматической коробке, нужно сразу проверять состояние гидротрансформатора в АКПП. Это поможет его спасти с минимальными расходами. Ремонт ГДТВ ремонт гидротрансформатора АКПП в сервисном центре входит:
От качества и точности выполненных работ зависит дальнейший срок службы гидротрансформатора. Для ремонта нужны специализированные инструменты, станки, стенды, знания особенностей конкретной АКПП. В случае неполадок нужно обращаться в узконаправленный сервис, который «набил руку» на ремонте определенной модели. Агрегат не всегда можно починить. Для особо редких экземпляров сложно найти замену. В этому случае принимают решение о восстановлении деталей ГДТ. Средняя цена за ремонт «бублика» АКПП составляет 5000 р. Замена — от 50 000 р. Цены зависят от модели агрегата и сложности поломки. Рекомендации по обслуживанию и эксплуатации ГДТПрименение «бублика» в трансмиссии упрощает и облегчает управление автомобилем даже в тяжелых условиях. Однако, АКПП с гидротрансформатором при сравнении с МКПП проигрывает по параметрам:
Чтобы стать постоянным клиентом мастерской по ремонту гидротрансформатора АКПП, нужно соблюдать два правила:
Если серьезно, то ГДТ выходит из строя медленно и незаметно для водителя. Явный сигнал неисправности — течь масла в месте соединения гидротрансформатора и двигателя. Другие признаки неполадки могут проявляться уже на стадии распространения «заболевания» по все АКПП. Поэтому, если автомобиль ведет себя странно: медленно разгоняется, увеличил расход топлива, при движении появляется вибрация — нужно отправить машину на проверку. Перед самостоятельным осмотром коробки нужно изучить устройство и особенности конкретной модели АКПП. Чтобы добраться до гидротрансформатора, придется снимать всю коробку. Без распила и разборки отремонтировать «бублик» не получится. Промывка гидротрансформатора растворителями может повредить колесам и «разъесть» сальники. После ремонта и сборки АКПП необходима балансировка гидротрансформатора. Не все сервисы проводят эту операцию, поскольку она трудоемка и проблематична. ГДТ работает на высоких оборотах — дисбаланс или нарушение соосности валов выведут из строя не только «бублик», но и всю АКПП. Срок службы современного гидротрансформатора АКПП составляет 150 — 200 000 км. Ресурс сократится до 100 000, если менять масло. Фрикционы истираются к 120 — 150 000 км и тоже требуют замены. После 200 000 км «бублику» с регулируемым проскальзыванием прописан плановый капремонт. akppoff.ru Гидротрансформатор АКПП, он же «Бублик», он же «Дыня»)) — DRIVE2Недавно на работе привезли из ремонта «бублик» разрезанный, не подлежащий ремонту. Итак начнем. Гидродинамический трансформатор («Гидротрансформатор» или «ГДТ») это герметично заваренный узел, передающий вращательный момент от Двигателя — к Автоматической трансмиссии при помощи двух вращающихся в масле турбин. Для полноты понимания данного процесса представьте себе два домашних вентилятора направленных друг на друга, если включить один из них, то он создаваемым потоком воздуха, приведет в движение и тот вентилятор, который выключен. Примерно тот же процесс происходит внутри ГДТ, только роль воздуха там выполняет масло. Вот так обычно ГДТ выглядит снаружи: А вот те самые турбинные колеса с лопастями Реакторное колесо. То есть по сути, этот узел заменяет собой сцепление, но тогда почему же не установить для связи двигателя и АКПП обычное сцепление? Если поставить обычное сцепление, то тогда нам неизбежно придется выключать его при остановке автомобиля (нажимать на педаль сцепления), дабы двигатель не заглох, тогда сводиться на нет все удобство от использования АКПП. ГДТ же в свою очередь, на холостом ходу при включеной передачи и нажатой педали тормоза, ввиду отсутствия прямой механической связи, не дает двигателю заглохнуть. С общим принципом работы разобрались, теперь давайте разберемся из каких частей состоит ГДТ, для чего они служат и как все это взаимодействует Циркуляция масла в ГДТ Гидротрансформатор состоит из двух лопастных машин — центробежного насоса, центростремительной турбины и расположенного между ними направляющего аппарата-реактора. Насос и турбина предельно сближены, а их колесам придана форма, обеспечивающая непрерывный круг циркуляции рабочей жидкости. В результате гидротрансформатор получил минимальные габаритные размеры и одновременно снижены потери энергии на перетекание жидкости от насоса к турбине. Насосное колесо связано с коленчатым валом двигателя, а турбина — с валом коробки передач. Тем самым в гидротрансформаторе отсутствует жесткая связь между ведущими и ведомыми элементами, а передача энергии от двигателя к трансмиссии осуществляется потоками рабочей жидкости, которая отбрасывается с лопаток насоса на лопасти турбины. Собственно, по такой схеме работает гидромуфта, которая просто передает крутящий момент, не трансформируя его величину. Чтобы изменять момент, в конструкцию гидротрансформатора введен реактор. Это также колесо с лопатками, однако оно жестко прикреплено к корпусу и не вращается (заметим: до определенного времени). Реактор расположен на пути, по которому масло возвращается из турбины в насос. Лопатки реактора имеют особый профиль, а межлопаточные каналы постепенно сужаются. По этой причине скорость, с которой рабочая жидкость течет по каналам направляющего аппарата, постепенно увеличивается, а сама жидкость выбрасывается из реактора в сторону вращения насосного колеса, как бы подталкивая и подгоняя его. Отсюда сразу два следствия. Первое — благодаря увеличению скорости циркуляции масла внутри гидротрансформатора при неизменном режиме работы насоса (читай: двигателя, поскольку насосное колесо, как говорилось выше, жестко связано с коленвалом) крутящий момент на выходном валу гидротрансформатора увеличивается. Второе — при неизменном режиме работы насоса режим работы турбины изменяется автоматически и бесступенчато в зависимости от приложенного к валу турбины (читай: колесам автомобиля) сопротивления. По аналогичной схеме работает автоматическая трансмиссия и при старте с места. Только теперь самое время вспомнить про педаль газа, нажатие на которую увеличивает обороты коленчатого вала, а значит, и насосного колеса, и про то, что сначала автомобиль, а следовательно, и турбина находились в неподвижном состоянии, но внутреннее проскальзывание в гидротрансформаторе не мешало двигателю работать на холостом ходу (эффект выжатой педали сцепления). В этом случае крутящий момент трансформируется в максимально возможное число раз. Когда скорость автомобиля достигает определенной отметки, то в дело вступает блокировка ГТД, при помощи фрикционных пластин, она прижимает турбинное колесо к корпусу ГДТ и тогда двигатель с АКПП становиться соединен жесткой механической связью и передает 100% крутящего момента АКПП. Прочитав все вышесказаное закономерно возникает вопрос: зачем же к гидротрансформатору присоединяют КПП, если он сам способен изменять величину крутящего момента в зависимости от нагрузки на ведущие колеса? Ну и в заключение видео, которое даст полное понимание работы ГДТ Спасибо за внимание. www.drive2.ru Гидротрансформатор подробно — Энциклопедия журнала «За рулем»Гидротрансформатор — усовершенствованная гидромуфта, механизм увеличения крутящего момента в 2-3 раза, часть гидромеханической трансмиссии. В настоящее время применяется повсеместно на легковых, грузовых автомобилях, автобусах, тракторах и другой транспортной и специальной технике. Обычно работает в паре с планетарной автоматической коробкой передач, но иногда устанавливается на автомобили с бесступенчатой вариаторной трансмиссией. Устройство и принцип действияКонструктивно гидротрансформатор идентичен гидромуфте с одним отличием — между насосным и турбинным колесами установлен статор (или роторное колесо). Назначение статора — направить движение жидкости на лопатки турбинного (ведомого) колеса гидротрансформатора и тем самым использовать кинетическую энергию относительного движения жидкости, которое в гидромуфте направлено от центра насосного (ведущего) колеса к его периферии. Гидротрансформатор по сравнению с гидромуфтой имеет более сложное устройство и больший КПД. В массовом производстве детали гидротрансформатора приходится обрабатывать с особой точностью. Но практическая ценность гидротрансформатора по сравнению с гидромуфтой несравнимо выше. Ротор гидротрансформатора оснащен обгонной муфтой, которая блокирует его вращение при больших оборотах насосного колеса. Этот режим называется стоповым. Гидротрансформатор обладает многими достоинствами, выполняя функции демпфера крутильных колебаний двигателя. Но из-за неизбежных потерь использование гидротрансформатора снижает экономичность автомобиля. Дело в том, что частота вращения насосного колеса всегда выше частоты вращения турбинного колеса. И если в моменты разгона автомобиля гидротрансформатор выполняет полезную работу по увеличению крутящего момента, то при равномерном движении его применение нецелесообразно. wiki.zr.ru ZF center › Блог › Гидротрансформатор — принцип работы, основные элементы, причины и последствия износа.Гидротрансформатор (ГТ) — один из элементов АКПП, выполняет важную функцию — передаёт крутящий момент от двигателя к механизму АКПП. Основная задача ГТ на начальном этапе, когда ГТ только появился в конструкции АКПП — иметь не жесткую связь между двигателем и механизмом коробки. Тогда ГТ состоял из двух деталей и назывался гидромуфтой. И это — первая функция ГТ. Далее в конструкцию ГТ было внедрено дополнительное реакторное колесо, и ГТ — стал выполнят функцию изменения крутящего момента (примерно 2х кратное) при разгоне. Собственно отсюда и пошло название гидротрансформатор. Основные неисправности ГТ и внешние признаки Самая частая неисправность — износ блокировки. Изнашивается или «засаливается» фрикционный слой фрикционной накладки или диска. Или падает давление в механизме блокировки (также по разным причинам). Блокировка начинает «проскальзывать». Для владельца это ощущается в виде вибрации, толчков. Иногда это может выглядеть как езда по «стиральной доске». Фактически происходит периодическое проскальзывание блокировки и коробка получает ударные переменные нагрузки, которые и воспринимаются как «толчки» при езде. Другие неисправности ГТ — часто идут как «последствия» износа муфты блокировки: Компания ZFcenter выполняет комплекс работ по капитальному ремонту АКПП. При каждом капитальном ремонте АКПП, выполняет ремонт ГТ с полной разборкой и дефектовкой. По желаю Клиента, можно выполнить только ремонт ГТ — как уже снятого с машины и привезённого к нам, так и снятие-установка АКПП с последующим ремонтом ГТ. Мы также принимаем ГТ в ремонт, присланный нам из других регионов силами внешней Транспортной компании. Во второй части. мы покажем небольшой фоторепортаж о выполнении ремонта ГТ на нашем производстве.</a> Подписывайтесь на наш Блог, не пропускайте очередные статьи и отчеты. Капитальный ремонт АКПП BMW, Audi, Land Rover, Jaguar, Volkswagen, Jeep, Cadillac, Infinity, Бесплатная диагностика АКПП. Онлайн консультации. Бесплатная эвакуация. Полный размер Полный размер Полный размер www.drive2.ru Устройство и принцип действия АКПП — DRIVE2• Автоматическая коробка передач имеет ряд неоспоримых достоинств. Она существенно упрощает управление автомобилем. Переключения производятся плавно, без рывков, что улучшает ездовой комфорт и увеличивает срок службы трансмиссии. Современные АКПП имеют возможность ручного переключения передач и режимов работы, могут подстраиваться под стиль вождения конкретного водителя. — Устройство и принцип работы: • Автоматическая коробка передач состоит из следующих основных узлов: гидротрансформатора, планетарного ряда, системы управления и контроля. Коробка переднеприводных автомобилей дополнительно содержит внутри корпуса главную передачу и дифференциал. — Режимы работы гидротрансформатора: • Перед началом движения насосное колесо вращается, реакторное и турбинное — неподвижны. Реакторное колесо закреплено на валу при помощи обгонной муфты, и поэтому может вращаться только в одну сторону. Включаем передачу, нажимаем педаль газа — обороты двигателя растут, насосное колесо набирает обороты и потоками масла раскручивает турбинное. Масло, отбрасываемое обратно турбинным колесом, попадает на неподвижные лопатки реактора, которые дополнительно «подкручивают» поток масла, увеличивая его кинетическую энергию, и направляют на лопасти насосного колеса. Таким образом с помощью реактора увеличивается крутящий момент, что и требуется при разгоне автомобиля. Когда автомобиль разогнался, и движется с постоянной скоростью, насосное и турбинное колеса вращаются примерно с одинаковыми оборотами. При этом поток масла от турбинного колеса попадает на лопасти реактора уже с другой стороны, благодаря чему реактор начинает вращаться. Увеличения крутящего момента не происходит, гидротрансформатор переходит в режим гидромуфты. Если же сопротивление движению автомобиля возросло (например, автомобиль едет в гору), скорость вращения ведущих колес, а, соответственно, и турбинного колеса падает. В этом случае потоки масла опять останавливают реактор — крутящий момент возрастает. Таким образом осуществляется автоматическое регулирование крутящего момента в зависимости от режима движения. Как работает планетарная передача Почему в АКПП в подавляющем большинстве случаев применяется планетарная передача, а не валы с шестернями, как в механической коробке? Планетарная передача более компактна, она обеспечивает более быстрое и плавное переключение скоростей без разрыва в передаче мощности двигателя. Планетарные передачи отличаются долговечностью, так как нагрузка передается несколькими сателлитами, что снижает напряжения зубьев. www.drive2.ru Гидротрансформатор АКПП: все об устройстве и неисправностяхГидротрансформатор – это далеко не новое изобретение для автомобильной индустрии. Впервые он появился порядка ста лет назад, но за долгое время своего существования устройство претерпело значительные изменения. Сегодня гидротрансформаторы используют для передачи крутящего во многих отраслях промышленности. Разумеется, автомобильная промышленность исключением не стала. Об особенностях устройства гидротрансформаторов, принципе их работы, а также неисправностях вы сможете узнать из материала Avto.pro. Экскурс в историюПрообраз современных гидротрансформаторов был создан еще в 1905 году Германом Феттингером – талантливым немецким инженером, который работал над устройствами для передачи передачи крутящего момента. Свой механизм он назвал гидромуфтой. Изначально его планировалось использовать в судах. Суть работы муфты сводилась к передаче крутящего момента с помощью рециркуляции жидкости, которая заполняла пространство между парой лопастных колес. Такое техническое решение должно было решить проблемы обратной нагрузку на валы, двигатель и их соединительные элементы – жидкость решила бы недостатки жесткой связи между агрегатами и смежными с ними деталями. Первый автомобиль, оснащенный гидротрансформатором, выпустил концерн General Motors. Это была модель Oldsmobile Custom 8 Cruiser 1939 года. Автолюбители отметили, что управление данным автомобилем было очень легким, простым и, разумеется, комфортным. Чуть позже аналогичные устройства начали применять и в других моделях личного транспорта. Сегодня гидротрансформатор является верным спутников автоматических коробок передач. Автолюбители часто называют его «бубликом» из-за специфической геометрии. Достоинства и недостаткиПрежде чем мы начнем изучать устройство гидротрансформаторов, давайте разберемся, почему их вообще стали применять. Трансмиссия с жестким соединением первичного вала с двигателем имеет серьезный недостаток: в определенных режимах работы двигателя на трансмиссию приходятся сильные нагрузки, которые становятся причиной ускоренного износа деталей. Трансформатор решил эту проблему. Но у него есть и другие достоинства. Среди них:
Где есть достоинства, там есть и недостатки. Главная особенность гидротрансфортматора – передача момента посредством движения жидкости – является и его главным недостатком. Вот почему автоконцерны продолжают работать над его улучшением:
Так как на раскручивание жидкости в гидротрансформаторе требуется время и мощность, динамика автомобиля может пострадать. Кроме того, проектирование и сборка гидротрансформатора требует больших экспертных мощностей и денежных трат. Автомобиль, оснащенный АКПП с трансформатором стоит дороже моделей с наиболее простой механической трансмиссией. Но с учетом того, что устройтсво не только делает работу трансмиссии более плавной, но и увеличивает ее эксплуатационный ресурс, денежные траты окупаются. Подробнее о принципе работыПринцип работы гидротрансформатора сводится к передаче момента от двигателя к автомобильной трансмиссии без создания жесткой связи. Момент передается посредством рециркуляции жидкости. По сути, работает трансформатор АКПП так же, как и гидравлическая муфта. Но не стоит путать два этих устройства – гидротрансформатор несколько сложнее. Он состоит из таких элементов:
Если разобрать гидротрансформатор, то можно увидеть следующее: на одной оси размещено турбинное, насосное и реакторное колесо, а весь внутренний объем механизма заполнен трансмиссионной жидкостью. Между каждым из лопастных колес нет жесткого соединения, но оно и не требуется. Насосное колесо имеет жесткое соединение с коленвалом, а значит, при запуске двигателя оно будет проворачиваться вместе с ним. Турбинное колесо имеет жесткое соединение с первичным валом автомобильной АКП. Между этими колесами расположен реактор, иначе называемый статором. Сам же реактор имеет смежный элемент – муфту свободного хода, которая не дает ему вращаться в двух направлениях. Кстати, в обычных гидравлических муфтах, которые часто сравнивают с гидравлическими трансформаторами, статора и муфты нет. Лопасти всех колес имеет особую геометрию, которая позволяет им захватывать как можно больший объем трансмиссионной жидкости. Работает устройство так: при включении двигателя и по ходу повышения оборотов насосное колесо начинает вращаться со все большей скоростью, постепенно раскручивая и жидкость. Так как турбинное колесо имеет схожую геометрию лопастей, оно начнет вращаться, увлекаемое трансмиссионной жидкостью. Выделяется здесь только реактор – он придает жидкости ускорение. Это становится возможным благодаря особой конструкции лопаток. Они имеют специфический профиль с сужающимися межлопаточными каналами. Жидкость, входя в сужающиеся каналы, выбрасывается в сторону выходного вала с увеличенной скоростью. Формирование потока жидкости в гидротрансформаторе напрямую определяется скоростью насосного колеса. Скорость вращения последнего, в свою очередь, зависит от скорости вращения коленчатого вала. Как только лопастные колеса синхронизируется, гидротрансформатор начинает работать как гидромуфта – он не увеличивает крутящий момент. Если же нагрузка на выходной вал увеличивается, турбинное колесо немного замедляется. Реактор (статор) блокируется, начиная трансформировать поток трансмиссионной жидкости. Режимы работыДля полного понимания принципов работы гидротрансформатора стоит уделить внимание режимам его работы. Как стало понятно из предыдущих разделов, этот агрегат передает крутящий момент без жесткого соединения вращающихся деталей. Однако в силу отсутствия такого соединения агрегат имеет несколько недостатков. В частности, уже упомянутые низкий КПД и посредственная динамика автомобиля. Проблемы удалось решить на конструктивном уровне – введением механизма блокировки, иначе называемого блокировочной плитой. У современных гидротрансформаторов есть несколько режимов работы:
Блокировочная плита соединена с турбинным колесом, а значит, и с первичным валом коробки передач при помощи пружин демпфера крутильных колебаний. Получив команду от блока управления трансмиссией, она прижимает к внутренней поверхности корпуса агрегата под действием давления жидкости. Так как на плите расположены фрикционные накладки, она может обеспечить жесткое соединение и передачу крутящего момента от силового агрегата трансмиссии даже без участия жидкости. Блокировка может включаться на любой из передач. Блокировка гидротрансформатора может быть и частичной. Если плита прижимается к корпусу устройства неполностью, гидротрансформатор переходит в режим проскальзывания. Крутящий момент при этом передаваться как через механизм блокировки, так и через циркулирующую жидкость. В этом режиме автомобиль имеет достойные динамические характеристики, а его трансмиссия продолжает работать плавно. Электроника включает частичную блокировку при разгоне и отключает при понижении скорости. У данного режима есть только один недостаток: частое его включение приводит к истиранию фрикционной накладки плиты. Продукты износа попадают в трансмиссионное масло, что отрицательно сказывается на его рабочих свойствах. Применение гидротрансформаторовВозьмем пример того, когда гидротрансформатор упрощает пользование автомобилем. Предположим, начинается подъем на гору после движения по ровному участку дороги. Водитель забыл о манипуляциях с педалью акселератора. Так как нагрузка на ведущие колеса увеличилась, а автомобиль сбросил скорость, частота вращения турбины должна уменьшиться. При этом уменьшилось гидравлическое сопротивление – скорость циркуляции трансмиссионного масла в гидротрансформаторе увеличилась. Это означает, что крутящий момент, передаваемый валу турбинного колеса, вырос. Водитель обнаружит, что пока лопастные колеса не синхронизировались, автомобиль двигается так, будто произошел переход на низшую передачу, как это делается в автомобилях с механической коробкой передач. Пытливый автолюбитель может обнаружить следующее: крутящий момент может преобразовываться гидротрансформатором слишком большое число раз. Что при этом происходит? Необходимая скорость уже достигнута, однако жидкость продолжает набирать скорость вращения. Здесь на выручку приходит механизм блокировки. Он создает жесткую связь между ведущим и ведомым валом. Блокировка устроена так, что потери мощности будут минимальными. При этом гидротрансформатор не увеличит расход топлива как до, так и после блокировки. Вот еще один вопрос: если гидротрансформатор сам может менять величину крутящего момента, зачем присоединять его к автоматической коробке передач? Дело в том, что коэффициент изменение крутящего момента данного устройства равен 2,0 – 3,5 (обычно 2,4). Это не тот диапазон передаточных чисел, который нужен для эффективной работа автомобильной трансмиссии. К тому же, гидротрансформатор никак не поможет в движении задним ходом или в случаях, когда ведущие колеса разъединены с двигателем. Неисправности гидротрансформаторовКонструкция гидротрансформатора не кажется слишком сложной. Да, каждая деталь устройства спроектирована с учетом того, что к ней будут прилагаться большие нагрузки. Однако учтите тот факт, что в тандеме с трансформатором работает и электроника. Механические и электронные компоненты рано или поздно выходят из строя, причем у разных моделей авто могут быть свои специфические неисправности. Чаще всего автолюбители отмечают следующее:
Отдельно стоит сказать об опасности перегрева гидротрансформатора. Если автолюбитель игнорировал необходимость замены трансмиссионного масла, трансформатор будет страдать от сухого трения и перегрева. Также стоит уделять внимание остаточному ресурсу фильтра АКПП и чистоте системы охлаждения агрегата. Обычно проблема устраняется заменой расходников, чисткой и заливкой нового масла. В запущенных случаях требуется замена отдельных узлов гидротрансформатора. Общие признаки выхода гидротрансформатора из строя: повышенный расход топлива, рывки при движении на постоянной скорости, а также при торможении двигателем, плохое состояние масла при замене. Как правило, масло в агрегате с изношенным гидротрансформатором имеет черный цвет. Некоторые неисправности могут указывать на поломку других деталей автоматической коробки передач, так что если вы заметили ненормальную работу трансмиссии, скорее обращайтесь к специалисту для диагностики своего авто. Выбор нового агрегатаНайти новый гидротрансформатор не так уж сложно. Автолюбителям важно понимать, что при подборе нельзя допускать ошибок – если он выберет неподходящий агрегат, его не получится установить на свой автомобиль. Как результат, устройство нужно будет возвращать продавцу и начинать поиски снова. Чтобы не допустить ошибку, гидротрансформатор обычно ищут по:
Особняком стоит поиск по параметрам автомобиля. Он не всегда дает точный результат, но если вести поиски в проверенных электронных каталогах, то вероятность ошибки становятся меньше. Необходимо указывать практически все технические параметры транспортного средства – от марки, модели и года выпуска до характеристик двигателя и коробки передач. Отдельно стоит рассказать о ремонте гидротрансформатора. Новое устройство в сборе стоит от 600 до 1000$, а иногда и больше. Ремонт же обходится в среднем в 4-6 раза дешевле. Впрочем, важно учитывать и стоимость снятия коробки передач. Как правило, мастера проводят мойку и дефектовку деталей, меняют уплотнители, гидроцилиндры, фрикционные накладки блокировочной плиты, а также по необходимости балансируют лопаточные колеса. Полный выход гидротрансформатора из строя – это запущенный случай. Автолюбителям достаточно менять расходники и вовремя проводить диагностику. ВыводГидротрансформатор – это один из важных компонентов автоматических коробок передач, который делает эксплуатацию автомобиля еще более простой и комфортной. В силу относительной простоты устройства и применения деталей с большим эксплуатационным ресурсом, он редко выходит из строя. Но не стоит думать, что довести дело до капитального ремонта будет сложно. Если водитель игнорирует необходимость регулярной замены масла и фильтров, поломка случится в самый неожиданный момент. Впрочем, даже изношенный гидротрансформатор можно отремонтировать. Добиться полного выхода устройства из строя нелегко. Если вы заметили, что трансмиссия начала работать ненормально, мы советуем для начала обратиться к специалисту. Он локализует проблему и выяснит, подлежат ли компонента АКП ремонту. Так как новый гидротрансформатор стоит немалых денег, ремонт будет предпочтительнее. avto.pro Гидротрансформатор — Энциклопедия журнала «За рулем»Схема гидротрансформатора: Гидротрансформатор был изобретен немецким профессором Феттингером в 1905 г. Прежде чем найти применение на автомобилях, гидротрансформатор использовался на судах и тепловозах. Детали гидротрансформатора: К сожалению, гидротрансформатор имеет малый диапазон передаточных чисел, не обеспечивает движения задним ходом, не разобщает двигатель от трансмиссии (необходима сложная система опорожнения проточных частей от рабочей жидкости). Поэтому за гидротрансформатором устанавливают специальную коробку передач, которая компенсирует указанные недостатки. Такая гидромеханическая передача является бесступенчатой и позволяет получить любое передаточное число в заданном диапазоне. Современная четырехступенчатая ГМП автомобиля классической компоновки wiki.zr.ru Как работает гидротрансформатор?Многие из Вас наверняка знают элементарные вещи об устройстве механической коробки передач — Вы знаете, что двигатель подключен к передаче путём сцепления, ведь без этой связи автомобиль не сможет прийти к полной остановке, разумеется, не убив двигатель. Но автомобили с автоматической коробкой передач не имеют сцепления, которое отключало бы трансмиссию от двигателя. Вместо этого в них используется удивительное устройство под названием гидротрансформатор. Может быть, его устройство Вам покажется несколько сложным, но то, что он делает и какое удобство доставляет, просто очень интересно! В этой статье мы узнаем, почему автоматическая коробка передач автомобиля так нуждается в гидротрансформаторе, как работает гидротрансформатор и его некоторые недостатки. Основы гидротрансформатораТак же, как и в случае с ручной трансмиссией, автомобилю с автоматической коробкой передач необходимо найти способ, чтобы одновременно держать двигатель работающим (крутящимся коленчатым валом), а колеса и шестерни в коробке передач остановленными.Автомобили с МКПП используют для этого сцепление, которое полностью отключает двигатель от коробки передач, а вот автоматическая коробка передач использует гидротрансформатор. Гидротрансформатор является одним из видов гидромуфты, которая позволяет двигателю вращаться независимо от трансмиссии. Если двигатель вращается медленно, например, когда автомобиль работает на холостом ходу на красном сигнале светофора, количество крутящего момента, который передаётся через гидротрансформатор, очень мало, и его достаточно, чтобы удержать автомобиль на месте путём лишь лёгкого давления на тормозную педаль. Если бы Вы надавили на педаль газа в то время как автомобиль остановился, Вам пришлось бы также нажать сильнее на тормоза, чтобы удержать машину от перемещения. Это происходит потому, что при нажатии на газ двигатель ускоряется, и насос из-за этого ускорения подаёт больше жидкости в гидротрансформатор, вызывая больший крутящий момент, который, в свою очередь передаётся на колеса. Как работает гидротрансформатор?Как показано на рисунке выше, существуют четыре компонента внутри очень крепкого корпуса гидротрансформатора:
Корпус гидротрансформатора крепится болтами к маховику двигателя, то есть корпус всегда крутится с той же скоростью, с какой крутится коленвал двигателя. Плавники, которые составляют насос гидротрансформатора, крепятся к корпусу, поэтому они также вращаются с одинаковой скоростью, что и двигатель. Гидротрансформатор в разрезе на рисунке ниже показывает, как всё это связано внутри гидротрансформатора. Насос внутри гидротрансформатора является одним из видов центробежных насосов. В то время как он вращается, жидкость движется направленно от центра к краям, примерно как вращающийся барабан стиральной машины во время отжима бросает воду и одежду по своим стенкам. В то же время, так как жидкость устремляется от центра, в это центре создаётся вакуум, который привлекает ещё больше жидкости. Затем жидкость поступает в лопасти турбины, которая связана с передачей. Именно турбина заставляет передачу крутиться, что в основном и приводит в движение Ваш автомобиль. Так как же жидкость (точнее, масло) поступает из насоса к турбине?! Дело в том, что в то время, как жидкость эта устремляется от центра к краям насоса, она встречает на своём пути лопасти насоса, которые направлены таким образом, что жидкость рикошетит о них и направляется уже вдоль оси вращения насоса прочь от него — к турбине, которая как раз и расположена напротив насоса. Лопасти турбины также немного искривлены. Это означает, что жидкость, которая поступает в турбину снаружи, должна изменить своё направление, переместившись в центр турбины. Именно это направленное изменение вызывает вращение турбины. Чтобы ещё проще представить принцип работы гидротрансформатора, представим ситуацию с расположенными друг напротив друга на небольшом расстоянии (допустим, около одного метра) комнатными вентиляторами и направленными друг напротив друга — если включить один из вентиляторов, то он за счёт своих искривлённых лопастей погонит воздух от себя к вентилятору, который стоит напротив него, а тот, в свою очередь, начнёт вращаться, потому как его лопасти также искривлены и поток воздуха толкает их все в какую-либо одну сторону (именно в ту сторону, в какую и начнёт вращаться вал вентилятора). Но мы всё ещё двигаемся далее: жидкость выходит из турбины в её центре, двигаясь опять же в другом — противоположном направлении, чем то, в котором она когда-то вошла в турбину — то есть снова по направлению к насосу. И вот здесь заключается большая проблема — дело в том, что по своей конструкции (точнее, по конструкции своих лопастей, насос и турбина вращаются в противоположные стороны, и, если жидкости будет разрешено попасть обратно в насос, то это будет сильно замедлять двигатель. Вот почему гидротрансформатор имеет статор, который, благодаря своей конструкции, изменяет направление движения масла, и, таким образом, остаточная энергия, которая возвращается от турбины к насосу, идёт в дело — немного помогая двигателю раскручивать насос. Важно отметить, что скорость вращения турбины никогда не будет равной скорости вращения насоса, а КПД в гидротрансформаторе даже близко не будет стоять к механическим шестерёнчатым механизмам, передающим крутящий момент. Именно поэтому у автомобиля с АКПП значительно более высокий расход топлива. Для борьбы с этим эффектом, большинство автомобилей имеет гидротрансформатор, снабжённый блокировочной муфтой . Когда требуется, чтобы две половинки гидротрансформатора (насос и турбина) вращались с одинаковой скоростью (это происходит, например, когда автомобиль движется на высокой скорости), блокировочная муфта блокирует их вместе намертво, что исключает проскальзывание насоса относительно турбины и, таким образом, повышает эффективность расхода топлива. howcarworks.ru Гидромуфта и гидротрансформатор — DRIVE2Гидравлическая муфта (она же гидромуфта), а также впоследствии вытеснивший ее гидротрансформатор представляют собой закрытые механизмы полуавтоматических и автоматических коробок передач. Оба устройства используются для передачи крутящего момента от ведущего вала двигателя к АКПП. В обоих механизмах между ведущим и ведомым валами нет жесткой связи, поэтому они передают вращение от одной оси к другой плавно и равномерно, без каких-либо рывков и толчков. История Своим рождением гидротрансформатор и гидромуфта обязаны развитию судостроения в конце XIX века. С появлением на кораблях морского флота паровых машин возникла острая необходимость в новом дополнительном механизме, который позволял бы плавно передавать крутящий момент от паровых двигателей к большим и тяжелым гребным винтам, погруженным в воду. Такими устройствами стали гидромуфта и гидротрансформатор, которые запатентовал в 1905 году немецкий инженер и изобретатель Герман Феттингер. Позже эти механизмы адаптировали для установки на лондонские автобусы, а затем на автомобили и первые дизельные локомотивы для более плавного начала движения. Устройство и принцип работы гидромуфты Внутри гидромуфты очень близко друг к другу соосно размещены два вращающихся колеса с лопастями. Одно соединено с ведущим валом (насосное), а второе с ведомым (турбинное). Все пространство вокруг них в гидромуфте заполнено рабочей жидкостью (масло). Принцип работы гидромуфты очень прост. Её ведущий вал вращается двигателем. Вместе с валом в корпусе гидромуфты циркулирует и масло. За счет своей вязкости оно постепенно все больше и больше вовлекает за собой в это вращение ведомый вал. Таким образом, крутящий момент от двигателя плавно нарастая постепенно через жидкость передается на ведомый вал. Устройство и принцип работы гидротрансформатора По сути, гидротрансформатор это та же гидромуфта в которой между вращающимися колёсами добавлено третье лопастное колесо – реактор (статор). Посредством муфты свободного хода оно может вращаться на ведущем валу, образуя единое целое с насосным колесом. Это происходит до тех пор, пока обороты вращения насоса и турбины различаются. Как только они уравниваются, реактор начинает вращаться независимо от насоса, превращая гидротрансформатор в гидромуфту. Плюсы и минусы Главным достоинством гидромуфты и гидротрансформатора является возможность плавного изменения крутящего момента, передаваемого на трансмиссию от двигателя. Еще одним важным плюсом этих устройств является ограничение максимального передаваемого крутящего момента. Иными словами, эти механизмы никогда не смогут передать слишком большое вращение, способное повредить трансмиссию. Они предохранят от перегрузок приводной двигатель (особенно в момент пуска). Самый большой недостаток гидротрансформатора и гидромуфты, в свою очередь, является низкий КПД в сравнении с механическими муфтами, имеющими жесткую связь ведущего и ведомого вала. Часть крутящего момента в них попросту тратится на перемешивание масла. Вместо того чтобы превратиться в полезный крутящий момент на выходном валу энергия вращения трансформируется в тепло, нагревая корпус муфты. Соответственно, это приводит к увеличению расхода топлива. Чтобы избежать этого, у современных автомобилей с АКПП для гидротрансформаторов предусмотрен механизм блокировки, который жестко связывает насос и турбину при достижении определенной скорости. www.drive2.ru |
Принцип работы гидротрансформатора
20.05.2010
Краткий обзор гидротрансформатора
Крутящий момент, создаваемый двигателем, передается к автоматической коробке передач посредством гидротрансформатора. В этом разделе описывается, как элементы гидротрансформатора создают гидравлическую связь, увеличивают крутящий момент при низких значениях скорости и устанавливают прямую механическую связь с двигателем при высоких значениях скорости.
Гидротрансформатор обеспечивает гидравлическую связь между коленчатым валом двигателя и коробкой передач. Гибкая пластина крепится болтами к задней части коленчатого вала, а гидротрансформатор, в свою очередь, крепится болтами к гибкой пластине.
Трансмиссионная жидкость для автоматической коробки передач (ATF), находящаяся в гидротрансформаторе, передает вращательное движение коленчатого вала к первичному валу коробки передач. Гидротрансформатор вращается всегда, когда работает двигатель.
Простой гидротрансформатор имеет три основных элемента: лопастное колесо, статор (или направляющий аппарат) и турбину. Большинство современных гидротрансформаторов также имеют муфту, служащую для блокировки гидротрансформатора при соответствующих рабочих условиях автомобиля.
Трехэлементный гидротрансформатор
При работающем двигателе и гидротрансформаторе, не заполненном трансмиссионной жидкостью, первичный вал вращаться не будет. Однако, когда гидротрансформатор заполняется трансмиссионной жидкостью, вал будет не просто вращаться, он будет вращаться с силой, достаточной для приведения в движение внутренних элементов коробки передач, которые создают движущую силу автомобиля. Поэтому, трансмиссионная жидкость, находящаяся в гидротрансформаторе, обеспечивает связь между двигателем и коробкой передач.
В простом трехэлементном гидротрансформаторе нет никакой механической связи между секцией гидротрансформатора, приводимой в движение от двигателя, и первичным валом коробки передач. Двигатель с первичным валом связывает только трансмиссионная жидкость, находящаяся в гидротрансформаторе. В главах, данных на следующих страницах, описывается каждый элемент гидротрансформатора и объясняется, как обеспечивается гидравлическая связь.
Лопастное колесо
Если вы знакомы с конструкцией водяных насосов автомобиля, то уже знаете, что такое лопастное колесо. Лопастное колесо в водяном насосе — это ступица с лопастями, которая вращается на вале. Когда работает двигатель, вращающиеся лопасти лопастного колеса заставляют охлаждающую жидкость циркулировать по каналам охлаждающей жидкости и через радиатор.
Лопастное колесо гидротрансформатора работает аналогично. Вращающееся лопастное колесо за счет возникновения центробежной силы заставляет трансмиссионную жидкость циркулировать. Трансмиссионная жидкость вовлекается лопастями во вращательное движение, и по мере увеличения своей скорости уходит от центра лопастного колеса.
Т.к. жидкость стремится наружу, лопасти несут ее в направлении верхней кромки лопастного колеса. Когда скорость лопастного колеса увеличивается, трансмиссионная жидкость получает импульс движения, достаточный для того, чтобы уйти с краев лопастей и из лопастного колеса. Трансмиссионная жидкость выходит из лопастного колеса с силой, достаточной для приведения в движение первичного вала коробки передач, но при условии того, что сила правильно направлена.
Турбина
Турбина гидротрансформатора по конструкции аналогична лопастному колесу. Т.е. турбина — это ступица с лопастями (или лопатками). Такая конструкция нужна для того, чтобы турбина улавливала трансмиссионную жидкость, сбрасываемую лопастным колесом.
Когда рабочая жидкость сбрасывается с лопастного колеса, лопатки турбины подхватывают ее, заставляя течь к центру турбины. Эта сила вращает турбину до того момента, как жидкость пойдет обратно через центр турбины в направлении лопастного колеса.
Сила трансмиссионной жидкости, ударяющейся о лопатки турбины, зависит от частоты вращения коленчатого вала двигателя. Чем быстрее вращается коленчатый вал, тем большее количество силы передается жидкостью от лопастного колеса к турбине. Когда двигатель работает в режиме холостого хода, рабочая жидкость не имеет достаточно силы, чтобы вращать турбину, преодолевая удерживающее усилие тормозов. Жидкость просто циркулирует от лопастного колеса к турбине и обратно.
Трансмиссионная жидкость уходит от лопастного колесо в направлении по часовой стрелке, а возвращается к нему от турбины в направлении против часовой стрелки.
Статор (направляющий аппарат)
Статор (или направляющий аппарат) располагается между турбиной и лопастным колесом. Назначение статора гидротрансформатора — изменять направление потока трансмиссионной жидкости, когда она перемещается от центра турбины к центру лопастного колеса.
Жидкость течет от лопастного колеса к турбине в направлении по часовой стрелке. Однако, когда жидкость проходит через турбину, ее направление изменяется на противоположное — против часовой стрелки.
Если бы трансмиссионной жидкости было разрешено вернуться к лопастному колесу в направлении против часовой стрелки, это вызвало бы противодействие потока жидкости вращению лопастного колеса, тем самым уменьшая эффективность нагнетания лопастного колеса. Лопастное колесо должно было бы тратить часть крутящего момента, который оно получает от двигателя, на изменение направления потока жидкости.
Когда статор изменяет направление потока трансмиссионной жидкости, чтобы лопастное колесо вращалось в направлении по часовой стрелке, никакой крутящий момент не тратится впустую. Фактически жидкость с измененным направлением вращения помогает воздействовать на лопастное колесо, тем самым увеличивая крутящий момент.
Статор состоит из нескольких лопастей, подсоединенных к ступице, которая закреплена на муфте одностороннего действия.
Муфта в сборе имеет внутреннюю и наружную обоймы с двумя дорожками, разделенными подпружиненными роликами. Внутренняя обойма располагается на шлицевой опоре статора, которая проходит из коробки передач в гидротрансформатор. Т.к. внутренняя обойма имеет шлицевое соединение с опорой статора, она зафиксирована и не может вращаться.
Наружная обойма устанавливается над внутренней обоймой. Внутренняя и наружная обоймы разделяются подпружиненными роликами. Ролики располагаются в клиновых зазорах, образованных наклонными плоскостями, сделанными в наружной обойме. При наличии пружин ролики удерживаются напротив суженных концов клиновых зазоров.
Ролики, клиновые зазоры и дорожки позволяют наружной обойме вращаться только в одном направлении. Когда статор вращается по часовой стрелке, каждый ролик перемещается в расширенный конец клинового зазора, преодолевая усилие пружины, тем самым позволяя статору вращаться. Если статор вращается в противоположном направлении, пружина толкает каждый ролик внутрь клинового зазора, где он заклинивается между двумя дорожками. Когда ролики заклиниваются, статор стопорится относительно внутренней обоймы и не может вращаться.
Возврат потока трансмиссионной жидкости
Поток трансмиссионной жидкости, направленный против часовой стрелки, покидая турбину, перед достижением лопастного колеса проходит через лопасти статора. За счет кривизны лопастей статора направление потока жидкости полностью изменяется.
Изменение направления позволяет трансмиссионной жидкости входить в лопастное колесо и присоединяться к жидкости, текущей вдоль его лопастей. Первое преимущество статора заключается в том, крутящий момент двигателя не затрачивается впустую за счет способности статора изменять направление потока. Второе преимущество заключается в том, что жидкость входит в лопастное колесо в направлении, которое позволяет «помогать толкать» лопасти лопастного колеса.
Увеличение крутящего момента
Влияние статора приводит к тому, что трансмиссионная жидкость, входящая на лопастное колесо, уже находится в движении. Жидкость не должна разгоняться из неподвижного состояния. Она попадает на лопасти, где ускоряется. Ускорение прогоняет жидкость через лопастное колесо и отбрасывает ее к турбине со значительно увеличенной силой.
Благодаря этому эффективному управлению жидкостью, крутящий момент турбины становится больше, чем крутящий момент двигателя. Фактически крутящий момент увеличивается.
Увеличение крутящего момента статором возможно только в том случае, когда имеется большая разница в скорости между лопастным колесом и турбиной. Чем больше разница в скорости между этими двумя элементами, тем больше увеличение крутящего момента.
Увеличение крутящего момента
Муфта одностороннего действия статора играет важную роль в увеличении крутящего момента. Трансмиссионная жидкость, циркулирующая между лопастным колесом и турбиной, называется вихревым потоком. Этот поток существует только в том случае, когда имеется разница в частоте вращения между лопастным колесом и турбиной.
Самая большая разница скорости между этими двумя элементами имеет место, когда автомобиль в первый раз разгоняется из неподвижного состояния. В этот момент лопастное колесо вращается, а турбина — нет. Вследствие наличия большой разницы в скорости вихревой поток и увеличение крутящего момента — максимальны. Вихревой поток, проходящий через лопасти статора, пытается вращать статор против часовой стрелки. Когда это происходит, ролики муфты уходят в клиновые зазоры и блокируют статор относительно его опоры.
Когда автомобиль ускоряется, турбина постепенно приобретает скорость относительно лопастного колеса. В конечном счете турбина ускоряется вплоть до того момента, когда трансмиссионная жидкость начинает течь в одном направлении (по часовой стрелке).
Т.к. центробежная сила уменьшает вихревой поток, увеличение крутящего момента также уменьшается. Наконец, когда скорость турбины достигает приблизительно 90 процентов от скорости лопастного колеса, гидротрансформатор достигает фазы «сцепления». В этой фазе гидротрансформатор просто передает крутящий момент от двигателя через «гидравлическую муфту» к первичному валу коробки передач.
Связь не обязательно имеет место при определенной скорости движения. Например, автомобиль может перемещаться при стабильной скорости с гидротрансформатором, связанным с коробкой передач. Если водитель резко ускоряет автомобиль, чтобы обогнать другой автомобиль, более быстрое вращение двигателя приводит к увеличению скорости лопастного колеса, заставляя его вращаться быстрее, чем турбина. При значительной разнице в скорости между лопастным колесом и турбиной снова происходит увеличение крутящего момента (и вихревого потока) вплоть до того момента, когда турбина не начинает вращаться со скоростью лопастного колеса.
Когда скорость турбины увеличивается, а вихревой поток уменьшается, вращательное усилие, действующее на статор, реверсируется. Ролики муфты уходят из клиновых зазоров, отпуская муфту и позволяя статору вращаться свободно (по часовой стрелке). Направление потока трансмиссионной жидкости, ударяющейся о лопасти статора, также изменяются. Вместо течения к передней части лопастей статора, жидкость ударяется о заднюю часть лопастей. Если бы муфта не отпускала статор, его лопасти генерировали бы турбулентность потока, что значительно уменьшило бы эффективность гидротрансформатора.
Гидравлическая и механическая связь
Т.к. гидротрансформатор не имеет прямой механической связи с двигателем, он теряет некоторый крутящий момент двигателя вследствие наличия проскальзывания трансмиссионной жидкости. Скорости и нагрузки, прикладываемые к жидкости, заставляют лопастное колесо и лопатки турбины в некоторой степени проскальзывать в жидкости.
Это проскальзывание вызывает определенную потерю эффективности, особенно при более высоких значениях скорости автомобиля. Коленчатый вал двигателя может вращаться быстрее, чем турбина или вторичный вал, таким образом топливо тратится впустую. Чтобы исключить эту потерю эффективности, многие гидротрансформаторы обеспечивают прямую механическую связь (называемую блокировкой гидротрансформатора) между двигателем и коробкой передач. В режиме блокировки турбина и лопастное колесо вращаются с одинаковой скоростью. Нет никакого проскальзывания жидкости, что помогает уменьшать выделение тепла.
Блокирующийся гидротрансформатор — это один из самых распространенных способов обеспечения механической связи.
Блокирующийся гидротрансформатор механически связывает турбину с крышкой гидротрансформатора при различных значениях рабочей скорости, в зависимости от модели автомобиля и условий движения. Крышка механически крепится болтами к двигателю. В режиме блокировки крышка гидротрансформатора приводит в движение турбину. Гидравлическая связь исключается, а двигатель и турбина механически блокируются вместе, напрямую приводя в движение первичный вал коробки передач.
Блокирующийся гидротрансформатор требует, чтобы муфта сцеплялась и расцеплялась, обеспечивая и убирая механическую связь между двигателем и крышкой гидротрансформатора. Два основных типа муфты гидротрансформатора — это центробежная муфта и гидравлически активизируемая муфта гидротрансформатора.
Центробежная муфта гидротрансформатора использовалась главным образом до 1990 года. На современных автомобилях используется преимущественно гидравлически активизируемая муфта.
Центробежная муфта
Центробежная муфта имеет шлицевое соединение с турбиной через муфту одностороннего действия. Когда скорость автомобиля увеличивается, гидравлически активизируемая турбина и блокирующая муфта, соединенная с ней посредством шлицевого соединения, вращаются с увеличивающейся скоростью. Центробежная сила, воздействующая на колодки муфты, увеличивается, когда муфта вращается все быстрее и быстрее.
Когда турбина и блокирующая муфта начинают вращаться достаточно быстро, центробежная сила заставляет колодки муфты расходиться наружу до тех пор, пока они не войдут в контакт с внутренней поверхностью крышки гидротрансформатора. Каждая колодка прижимается своей рабочей поверхностью к крышке и блокирует ее относительно турбины.
Когда скорость автомобиля падает, скорость турбины и центробежная сила уменьшаются. Возвратные пружины втягивают колодки муфты, крышка отпускается, и турбина снова приобретает «гидравлический привод».
Муфта одностороннего действия приводит в движение муфту в сборе. При сцепленной муфте водитель может слегка отпустить педаль акселератора, позволяя автомобилю двигаться по инерции. Это позволяет двигателю и первичному валу вращаться с различной частотой вращения.
Фрикционные колодки не могут отпускаться при движении накатом, потому что центробежная сила удерживает их прижатыми к крышке. Вместо этого муфта одностороннего действия в сборе с демпфером отпускается таким образом, что первичный вал может вращаться с частотой, большей чем частота вращения коленчатого вала двигателя. Когда водитель разгоняет автомобиль, муфта одностороннего действия в сборе с демпфером снова блокирует турбину.
Муфта одностороннего действия в сборе с демпфером обеспечивает плавную работу гидротрансформатора. Пружины демпфера также способствуют обеспечению плавности работы. Эти пружины поглощают вибрации двигателя и демпфирует действие колодок, когда они прижимаются к крышке гидротрансформатора.
Когда при ускорении потребность в крутящем моменте превышает удерживающую способность фрикционных колодок, имеет место некоторое проскальзывание. Оно уменьшает крутильные колебания/ вибрации при более высокой нагрузке двигателя.
Гидравлически активизируемая муфта гидротрансформатора
Другой способ соединения двигателя и коробки передач напрямую заключается в использовании муфты гидротрансформатора (ТСС) с торсионными демпфирующими пружинами, присоединенными к ступице. Ступица в сборе имеет шлицевое соединение с первичным валом или турбиной в сборе.
Гидравлическая муфта отпущена
Сигналы от модуля управления управляют активизацией и отпусканием муфты гидротрансформатора. Модуль управления активизирует и отпускает гидравлическую муфту, включая или выключая электромагнит муфты гидротрансформатора. Электромагнит — это такой электрический переключатель, который имеет проволочную катушку. Когда через катушку пропускается электрический ток, катушка намагничивается. Электромагнитное поле перемещает якорь, который открывает и закрывает гидравлический канал.
Гидравлическое давление прикладывается к зоне между крышкой гидротрансформатора и пластиной поршня муфты. Гидравлическое давление обеспечивается питающим контуром гидротрансформатора, расположенным в блоке клапанов.
Когда электромагнит муфты гидротрансформатора не активизирован модулем управления, клапан остается открытым. Давление в магистрали проходит через электромагнитный клапан. Трансмиссионная жидкость проходит через переднюю камеру гидротрансформатора, между ТСС и крышкой гидротрансформатора.
Гидравлическая муфта активизирована
Муфта гидротрансформатора включается только тогда, когда модуль управления возбуждает электромагнитный клапан муфты гидротрансформатора. Электромагнитный клапан закрывает сливной канал, позволяя обеспечить в контуре рост давления в магистрали. Трансмиссионная жидкость направляется к задней камере, и сливается из передней камеры.
Гидравлическая сила толкает поршень ТСС к крышке гидротрансформатора. Эта связь напрямую передает крутящий момент двигателя через демпфер в сборе к первичному валу коробки передач. Т.к. лопастное колесо и турбина вращаются с одинаковой скоростью, увеличения крутящего момента не происходит, и гидротрансформатор находится в режиме блокировки.
автозапчасти в москве
Гидромеханическая коробка передач что это такое: принцип действия видео
Одним из элементов системы управления автомобилем является гидромеханическая трансмиссия. Благодаря ей водитель может переключать передачи плавно и без рывков. Гидромеханическая коробка передач — что это такое? Давайте разберемся.
Гидромеханическая коробка передач
Роль АКПП с гидромеханическим управлением
Для автомобиля и подобного ему транспортного средства трансмиссией является узел, который передает от двигателей к колесам крутящий момент. Так это выглядит в автомобилях со сцеплением, но их постепенно вытесняют с рынка АКПП. «Автоматы» сегодня ставят все чаще. В них не предусмотрено сцепления, а передачи переключаются автоматически. Гидромеханика помогает облегчить задачу смены передач во время движения. В классических коробках при управлении автомобилем выполняются следующие процессы:
- отключение трансмиссии от двигателя в момент смены передач;
- при изменении дорожных условий изменение величины крутящего момента.
Корпус гидротрансформатора вращается вместе с насосным колесом. Турбина с корпусом не связана (за исключением периода блокировки ГТ) – она соединена с валом коробки. Реактор при этом закреплен через обгонную муфту – она не дает ему проворачиваться под напором потока, когда разница в скорости вращения насосного и турбинного колес велика, но позволяет вращаться вместе с ними в одном направлении, когда автомобиль движется с постоянной скоростью и проскальзывание ГТ минимально. Так удается поднять КПД коробки.
Для выполнения этих действий и необходима гидромеханическая АКПП. Она одновременно выполняет функции сцепления и трансмиссии. Эту коробку специально придумали для использования в городских условиях, где постоянно выжимать сцепление может быть проблематично из-за частых остановок в пробках. Управляется автомобиль с гидромеханикой при помощи педалей тормоза и газа.
Разновидности гидромеханики
В состав этой трансмиссии обязательно входит гидротрансформатор, составляющие системы управления и механическая коробка. Она может быть одной из нескольких систем:
- многовальной;
- двухвальной;
- трехвальной;
- планетарной.
Последняя разновидность коробки наиболее распространена. Она часто устанавливается на легковые автомобили, так как не имеет высокой металлоемкости. Она отличается меньшим шумом при работе, высоким сроком службы и компактностью.
Вальные механизмы можно встретить на грузовиках и автобусах. В них для переключения передач предусмотрены многодисковые муфты, которые помещены в масло. Первая передача и задний ход включаются при помощи зубчатой муфты. Благодаря особому устройству вальных коробок переключение скоростей происходит за счет работы коленчатого вала. Скорость движения при этом не снимается, крутящий момент и мощность не разрываются.
Удаление царапин на кузове автомобиля без покраски.
НЕ ТРАТЬТЕ ДЕНЬГИ НА ПЕРЕКРАСКУ!
Теперь Вы сами сможете всего за 5 секунд убрать любую царапину с кузова вашего автомобиля.
Читать далее >>
Основное назначение АКПП
Функции гидротрансформатора
Гидротрансформатор выполняет функции сцепления в современных АКПП. Благодаря этому узлу автомобиль двигается с места плавно, без рывков. Динамические нагрузки при этом снижаются, что помогает эксплуатировать двигатель в щадящем режиме, повышая его долговечность. При применении гидротрансформатора части трансмиссии служат гораздо дольше. Водитель из-за снижения количества передач утомляется меньше. Гидротрансформаторы рекомендуется применять на внедорожниках, так как с их помощью можно увеличить проходимость автомобиля в тяжелых условиях – по снегу или песку.
Важно! В России также стоит выбирать трансмиссии с этим узлом, так как в зимнее время специальная техника часто не успевает прочищать дороги. Благодаря гидротрансформатору создается устойчивая сила тяги с небольшой скоростью вращения ведущих колес, что повышает их сцепление с дорожным покрытием.
Гидротрансформатор
Устройство гидротрансформатора
Размещают гидротрансформатор между двигателем и механической частью коробки. Он представляет собой соединенные между собой диски с лопастями. Первым идет насосное колесо, которое является ведущим. Оно связывает двигатель и трансформатор. Турбинное является ведомым, оно контактирует с первичным валом. За усиление крутящего момента отвечает реакторное. Турбины практически утопают в масле (погружены в него на три четверти). Их прикрывает корпус, защищающий от попадания в масло посторонних частиц. Во время работы турбины к насосному диску направляется усилие вращающего момента двигателя. Одновременно на турбинный диск направляется под давлением поток масла. Его раскручивает реакторное колесо, располагающееся в центральной части. Возникшее усилие передается на вал КПП.
Работает гидротрансформатор за счет особой циркуляции масла, которое попадает в него с внешней части насосного диска, затем движется на турбинное колесо и возвращается через центральную часть этого узла. Завершается цикл циркуляции масла на насосном диске.Замена крутящего момента в гидротрансформаторе происходит автоматически по мере возрастания нагрузки двигателя. Этот узел отправляет на коробку силу крутящего момента, где при помощи фрикционов происходит включение передач. Нужное передаточное число определяется трансформатором автоматически, в зависимости от его значения изменяется напор циркулирующего масла.
Гидротрансформатор акпп в разрезе
Планетарный механизм
В большинстве современных АКПП гидротрансформатор действует в паре с планетарной системой. Она занимается передачей крутящего момента к фрикционным муфтам. В самом простом варианте усилие направляется на центральную шестерню (солнечную). Два дополнительных сателлита (вспомогательные шестерни) находятся в постоянной сцепке с центральной шестерней благодаря нанесенным на эти элементы зубчикам. Сателлиты не фиксируются, а свободно вращаются вокруг своих осей. Механизм шестеренок находится внутри коронного колеса, которое в зависимости от включенной передачи фиксируется или приходит в движение. В момент фиксации коронной шестерни начинает двигаться ведомый вал (на него передается усилие). В противном случае сателлиты передают момент на коронную шестерню, оставляя ведомый вал в неподвижном состоянии. Для переключения передач в планетарные АКПП устанавливаются фрикционные муфты. Каждая из них выглядит как несколько дисков, представляющих собой тонкие пластины из гладкого металла. Каждая пластинка покрыта специальным фрикционным составом, предотвращающим ее износ. На части их можно найти шлицы. Между муфтами расположены прокладки. Прижимаются друг к другу они при помощи гидравлического поршня, функционирующего при подаче рабочей жидкости. При возрастании в нем давления фрикционы плотно смыкаются, становясь почти единым целым. После падения давления жидкости в гидравлическом поршне фрикционные диски возвращаются на место с помощью пружины. Работа фрикционов тесно связана с функционированием тормозных и планетарных механизмов. На эти моменты передаются команды системы управления КПП и крутящий момент двигателя. Без их участия не производится торможение двигателем и запуск на буксире. Механический узел действует слаженно и четко.
планетарная система
Важно! В нейтральном положении выключаются фрикционы и тормозные механизмы. При разгоне и переключении передач фрикционы начинают действовать, а планетарные системы вращаются синхронно.
Электронная часть гидромеханической АКПП
Электронное управление необходимо для точности переключения передач в современных АКПП. Сейчас практически нельзя встретить трансмиссии, работа которых бы не поддерживалась электронными комплектующими. Они отвечают за:
- Функционирование АКПП. В гидромеханике эта система состоит из регуляторов давления и насосов.
- Сбор информации о действующей программе управления.
- Выработку импульсов управления.
- Исполнение команд при переключении передач.
- За защиту двигателя и трансмиссии в случае опасной ситуации.
- За ручное управление, за все операции отвечает блок, а управление происходит за счет рычага.
Электронная часть гидромеханической АКПП
Сильные и слабые стороны гидромеханики
Гидромеханическая коробка представляет собой последовательное соединение трансформатора, планетарного узла с фрикционами гидравлической системы управления. Ее основное достоинство – отсутствие необходимости водителю переключать передачи вручную. Электроника делает это точно, благодаря чему отсутствует дискомфорт при движении, а двигатель не подвергается перегрузкам. Их отсутствие помогает сохранить его в целости на долгое время. При начале движения передача мощности также происходит без прерывания и рывков, что делает гидромеханику более совершенной, превосходящей по своим характеристикам механические коробки передач. Не зря их используют не только в автомобилестроении, но и устанавливают на танки (в Америке и Германии).
Важно! Если вы выбираете автомобиль, на котором преимущественно будете двигаться по городу, то стоит выбирать именно гидромеханическую АКПП. С ее помощью у вас не возникнет неудобств при остановках в пробках или на светофорах.
Слабой частью такой АКПП является гидротрансформатор
Недостатком такого механизма является его высокая стоимость и техническая сложность. При переключении передач можно заметить потерю производительности за счет пробуксовки фрикционов и тормозных лент. Слабой частью такой АКПП является и гидротрансформатор, из-за которого теряется крутящий момент. Несмотря на явные преимущества эффективность гидромеханики по результатам замеров составляет 86%, тогда как у обычной коробки она достигает 98%. Еще один недостаток – необходимость устанавливать системы подпитки охлаждения гидроагрегата. Они занимают место под капотом, из-за чего моторно-трансмиссионный отсек имеет большие габариты. Также автомобили с установленной гидромеханикой нельзя завести путем толкания или перемещения его на тросе. Для этой разновидности коробки, как и во всех автоматах, характерно отсутствие возможности регулировать потребление топлива. Описанный вариант гидромеханической АКПП является одним из самых примитивных. Сегодня разрабатываются более совершенные трансмиссии, которые устанавливают на легковые автомобили, выпущенные в последние годы. Гидромеханикой рекомендуется пользоваться тем, кто недавно сел за руль. Для новичка она незаменима тем, что самостоятельно переключать передачи нет необходимости.
Гидромеханическая коробка передач
Автор admin На чтение 5 мин. Просмотров 947
Традиционное устройство автомобиля включает в себя в качестве обязательного элемента его конструкции такие узлы, как сцепление и КПП. Однако меняющийся стиль и образ современной жизни, с уклоном в сторону обеспечения все большего комфорта, приводит к изменению этих традиционных узлов машины. Им на смену зачастую приходит гидромеханическая трансмиссия.
Трансмиссия? А это что такое и зачем?
Для автомобиля трансмиссией будет всё, что обеспечивает поступление крутящего момента к колёсам от двигателя, в том числе КПП и сцепление. В классическом транспортом средстве это было именно так. Но, как уже отмечалось выше, в современных легковых автомобилях им на смену приходит АККП. В этом случае управление машиной значительно упрощается – не надо пользоваться сцеплением и переключать вручную КПП. Педаль сцепления просто-напросто отсутствует, а переключения выполняются автоматически.
Происходит это благодаря гидромеханической коробке передач. Чтобы понять, что это такое, лучше всего вспомнить о двух основных моментах, возникающих во время управления автомобилем:
- необходимости отключения от двигателя трансмиссии при переключении передач;
- изменении значения крутящего момента, передаваемого от мотора к колесам при изменении дорожных условий.
В обычной автомашине это происходит при нажатии на сцепление и переключении ручки коробки передач. Однако в машинах с АКПП подобное действие во многих случаях выполняет гидромеханическая коробка передач.
Об устройстве гидромеханической коробки
Говоря про устройство применяемой в составе легкового автомобиля гидромеханической коробки передач, надо отметить ее основные узлы:
- гидротрансформатор;
- управляющие механизмы;
- механическая коробка передач.
Про гидротрансформатор
Основой гидромеханического автомата является гидротрансформатор. Фактически в гидромеханической АКПП он выполняет роль, аналогичную сцеплению в обычном автомобиле – передает момент от двигателя к коробке.
Как видно из рисунка, устройство гидротрансформатора довольно простое и включает в себя три колеса специальной формы:
- насосное, осуществляющее связь между двигателем и гидротрансформатором;
- турбинное, выполняющее связь с валом (первичным) коробки передач;
- реакторное, предназначенное для усиления крутящего момента.
Все эти турбины закрыты специальным корпусом и на три четверти погружены в масло, заполняющее внутренний объем. Гидромеханический привод работает таким образом – насосное колесо, на которое поступает вращающий момент от двигателя, вращаясь, направляет на турбинное колесо поток масла, которое им раскручивается и предает усилие на вал коробки передач.
Происходит циркуляция масла по сложной траектории – с внешней части насосного кольца на внешнюю часть турбинного, а затем через центр устройства обратно к насосному. Следствием такого движения является гидромеханическая передача момента к коробке передач от мотора.
Такой гидромеханический привод обладает особенностью – из-за присутствия третьего, реакторного колеса, возможно усиление передаваемого момента. Происходит это благодаря его расположению в центре гидротрансформатора.
Когда осуществляется гидромеханическая передача момента, поток масла от турбинного колеса направляется к центру устройства и затем возвращается обратно к насосному. Однако на его пути расположено реакторное колесо, и поток, оказывая на него давление, вызывает с его стороны ответную реакцию, которая, воздействуя на турбину, усиливает момент, переданный от насосного колеса.
Такое дополнительное воздействие, возникающее, когда происходит гидромеханическая передача мощности от мотора, приводит к тому, что она увеличивается. Величина усиления зависит от разности скоростей межу колесами гидротрансформатора, чем она больше, тем более значительным оно будет. Это особенно полезно при начале движения, когда выполняется гидромеханическая передача мощности от двигателя, работающего на холостом ходу, к неподвижной трансмиссии.
Очень полезным фактом являет то, что гидравлический привод автоматически устанавливает нужное передаточное число между колесами и двигателем, благодаря изменению величины напора жидкости при ее передаче между напорным и турбинным дисками.
Однако диапазон такого изменения достаточно небольшой, и при этом отсутствует возможность, используя гидромеханический привод, разорвать связь между трансмиссией и мотором, поэтому гидротрансформатор работает последовательно с планетарной коробкой, позволяющей устранить отмеченные недостатки.
Про планетарную коробку
В гидромеханической АКПП чаще всего используется планетарный механизм, устройство которого понятно из приведённого ниже рисунка.
В самом простейшем варианте крутящий момент поступает на солнечную шестерню 6, с которой шестерни-сателлиты 3 находятся в постоянном зацеплении, они свободно вращаются на своих осях. На них установлено водило 4, соединенное с валом 5, сателлиты 3 постоянно находятся в зацеплении с шестерней 2, на внутренней поверхности которой имеются зубья.
Когда коронная шестерня 2 заторможена, момент через водило 4 поступает на ведомый вал, а когда шестерня расторможена, то сателлиты передают момент на нее, а ведомый вал остается неподвижным.
В АКПП используются фрикционные муфты сцепления и ленточные тормоза, а управление ими осуществляется с помощью гидромеханической системы, представляющей собой различные каналы, пружины и насос для создания давления масла.
Достоинства и недостатки гидромеханической коробки
В соответствии с приведенным описанием конструкцию гидромеханической коробки передач можно представить как последовательное соединение гидротрансформатора, коробки передач (обычно планетарной) с фрикционами, а также гидравлической системой управления.
Достоинством такой АКПП считаются:
- исключение ручного переключения передач;
- обеспечение передачи мощности без прерывания и рывков, особенно при начале движения.
Однако такая АКПП обладает и своими недостатками. Один из них – потеря крутящего момента, вызванная тем, что в состав автоматизированной коробки входит гидротрансформатор.
По данным проведенных замеров, эффективность подобной АКПП не превышает восьмидесяти шести процентов, тогда как у обычной механической коробки она составляет девяносто восемь процентов.
Однако это самый простой вариант гидромеханической АКПП, разрабатываются и устанавливаются на легковые автомашины новые, значительно более совершенные варианты подобной коробки.
Гидромеханическая коробка позволяет освободить водителя от их переключения при движении автомашины, что особенно актуально для начинающих водителей, повысить безопасность движения и обеспечить при этом дополнительный комфорт.
Мне нравится1Не нравитсяЧто еще стоит почитать
Как работает гидротрансформатор?
Преобразователи крутящего момента представляют собой герметичные блоки; их внутренности редко выходят на свет, а когда они появляются, их все еще довольно сложно понять!
Представьте, что у вас два вентилятора повернуты друг к другу. Включите один вентилятор, и он будет обдувать лопасти второго вентилятора воздухом, заставляя его вращаться. Но если вы будете держать второй вентилятор неподвижно, первый вентилятор будет продолжать вращаться.
Именно так работает гидротрансформатор. Один «вентилятор», называемый крыльчаткой, соединен с двигателем (вместе с передней крышкой он образует внешнюю оболочку преобразователя).Другой вентилятор, турбина, соединен с входным валом трансмиссии. Если трансмиссия не находится в нейтральном или парковочном положении, любое движение турбины приведет к перемещению автомобиля.
Вместо воздуха в гидротрансформаторе используется жидкая среда, которую нельзя сжимать — масло, также известное как трансмиссионная жидкость. В автомобилях с автоматической коробкой передач используется гидротрансформатор. В этой статье мы обсудим, зачем автомобилям с автоматической коробкой передач нужен гидротрансформатор и как он работает.
Гидротрансформатор в автоматической коробке передач выполняет те же функции, что и сцепление в механической коробке передач.
Двигатель должен быть подключен к задним колесам, чтобы автомобиль двигался, и отключен, чтобы двигатель мог продолжать работать, когда автомобиль остановлен. Один из способов сделать это — использовать устройство, которое физически соединяет и разъединяет двигатель и трансмиссию — сцепление. Другой метод заключается в использовании гидравлической муфты определенного типа, например, преобразователя крутящего момента, который расположен между двигателем и трансмиссией.
Внутри очень прочного корпуса гидротрансформатора находятся три компонента, которые работают вместе для передачи мощности на трансмиссию:
Насос внутри гидротрансформатора представляет собой центробежный насос.Во время вращения жидкость выбрасывается наружу, подобно тому, как в процессе отжима стиральной машины вода и одежда выбрасываются наружу из стирального бака. Когда жидкость выбрасывается наружу, создается вакуум, который втягивает больше жидкости в центр.
Затем жидкость поступает на лопасти турбины , которая соединена с трансмиссией (шлиц посередине — это место, где он соединяется с трансмиссией). Турбина заставляет трансмиссию вращаться, что в основном приводит в движение ваш автомобиль.Лопатки турбины изогнуты так, что жидкость, которая входит в турбину снаружи, должна изменить направление, прежде чем она покинет центр турбины. Именно это изменение направления вызывает вращение турбины.
Поскольку турбина заставляет текучую среду менять направление, текучая среда заставляет турбину вращаться.
Жидкость выходит из турбины в центре, двигаясь в другом направлении, чем при входе. Жидкость выходит из турбины, двигаясь против направления вращения насоса (и двигателя).Если позволить жидкости попасть в насос, это замедлит двигатель, теряя мощность. Вот почему гидротрансформатор имеет статор.
Статор находится в самом центре гидротрансформатора. Его задача — перенаправить жидкость, возвращающуюся из турбины, прежде чем она снова попадет в насос. Это резко увеличивает эффективность гидротрансформатора.
Вкратце, гидротрансформатор представляет собой тип гидравлической муфты, которая позволяет двигателю вращаться в некоторой степени независимо от коробки передач.Он отвечает за нагнетание жидкости для автоматической коробки передач, нагнетание давления, которое обеспечивает усилие, необходимое для переключения передач трансмиссии.
Изношенный или неисправный гидротрансформатор может препятствовать созданию надлежащего давления в трансмиссионной жидкости, что, в свою очередь, отрицательно влияет на работу и работу трансмиссии. Систематический осмотр у профессионала — лучший способ выявить причину проблем в работе и порекомендовать наиболее эффективное решение.
При правильной настройке это сложное устройство может оказать огромное влияние на производительность, экономичность и долговечность вашего автомобиля, а также превратить вашу автоматическую коробку передач в двигатель!
Хотите узнать больше?
Посетите одно из наших мест!
Тайна гидравлической муфты
Большинство энтузиастов Mopar в некоторой степени технически подкованы и понимают принципы работы деталей, которые заставляют их автомобиль или грузовик работать должным образом.Однако есть некоторые части Mopars, которые у большинства из нас просто нет возможности полностью понять, и одна из этих частей — гидротрансформатор автоматической коробки передач. В прошлом месяце мы описали трансмиссию 904, которую мы будем устанавливать за двигателем Hemi последней модели в нашем автомобиле Dodge Challenger 2010 года выпуска, а в этом месяце мы рассмотрим конструкцию и работу гидротрансформатора, который мы будем использовать для соединения двигатель к трансмиссии.
По конструкции гидротрансформатор автомобиля (или гидротрансформатор) представляет собой гидравлическую муфту между двигателем и трансмиссией автомобиля, и его основные функции заключаются в том, чтобы позволить автомобилю работать на холостом ходу без остановки двигателя и обеспечить плавный запуск с места.Преобразователь также выполняет несколько функций, включая изоляцию трансмиссии и трансмиссии, а также гашение неравномерных импульсов мощности от двигателя аналогично пружинам сжатия в диске сцепления механической коробки передач. Гидротрансформатор также может умножать крутящий момент, позволяя автомобилю ускоряться быстрее с гидротрансформатором, чем с механической муфтой (сцеплением), при прочих равных.
Внутренняя работа гидротрансформатора сложна и разнообразна, но простыми словами может быть описана следующим образом.Если вы возьмете два электровентилятора лицом друг к другу, а затем включите один из них, образующийся воздух заставит лопасти другого вентилятора повернуться. Внутри преобразователя крыльчатка (приводимая в движение двигателем) будет вентилятором, который включен, а турбина (соединенная с входным валом трансмиссии) будет представлять вентилятор, лопасти которого движутся в зависимости от этого движения. Конечно, вместо воздуха лопасти в крыльчатке преобразователя толкают трансмиссионную жидкость, и между ними есть неподвижный набор лопаток, называемый статором, который направляет жидкость от крыльчатки к турбине.
Распространенное заблуждение относительно преобразователей крутящего момента состоит в том, что скорость срыва конкретного преобразователя постоянна, но в действительности скорость срыва является переменной как функция крутящего момента двигателя. Математическая константа, определяющая скорость останова преобразователя (в об / мин), называется коэффициентом «К» и получается из наблюдаемой скорости останова преобразователя, деленной на квадратный корень из приложенного крутящего момента. Математически это соотношение выражается следующим образом: K = об / мин / крутящий момент. После определения K-фактора для конкретного преобразователя скорость сваливания можно точно спрогнозировать для двигателей с разными уровнями крутящего момента, просто введя крутящий момент двигателя и K-фактор в уравнение и решив скорость сваливания.
Теперь, когда мы знаем основы конструкции и научные данные, лежащие в основе гидротрансформатора, давайте обсудим качество и долговечность. Наш последний проект — это дрэг-рейсинг Dodge Challenger 2010 года выпуска, который будет специализированным гонщиком. Поскольку автомобиль будет несколько тяжелым для гоночного автомобиля и иметь хороший крутящий момент от 426-дюймового двигателя Hemi последней модели, подготовленного Indy, нам нужен был преобразователь не только с надлежащей скоростью сваливания, но и с долговечностью. . Для нашего приложения мы выбрали 8-дюймовый преобразователь ATI Treemaster MRT, который ATI настроила специально для нашего приложения.
Отличительной особенностью преобразователей ATI является то, что они полностью создаются с нуля, в отличие от других компаний, которые в основном восстанавливают OEM-части. Конвертеры серии Treemaster от ATI специально разработаны для серьезных драг-рейсинга и настраиваются и изготавливаются специально для каждого конкретного приложения. Восьмидюймовый блок, созданный ATI, — это их MRT (минимальное время реакции) Treemaster, который имеет крышку из литого в два раза толще, чем штампованные крышки оригинального производителя. Эта технология позволяет почти мгновенно передавать мощность на трансмиссию для постоянных запусков, особенно при использовании трансмиссионного тормоза.Все преобразователи Treemaster имеют бесцентровую шлифованную ступицу, подшипники Torrington, прецизионную приводную трубу насоса, пайку крыльчатки и лопастей турбины в печи, а также внутреннюю опору лопастей, которые редко встречаются в преобразователях вторичного рынка.
Перед созданием нашего конвертера ATI задала длинный список очень конкретных вопросов, чтобы убедиться, что они оптимизировали конвертер Treemaster для нашего приложения. ATI внимательно рассматривает вес автомобиля, размер шин, передаточное число и то, будет ли автомобиль использовать транс-тормоз или ножной тормоз во время гонки.Кроме того, ATI запрашивает номера динамометрических стендов двигателя, а также технические характеристики распределительного вала, чтобы тщательно оценить, какой диаметр и скорость сваливания будут наилучшими. Мы были впечатлены вниманием ATI к деталям, и нам не терпится установить этот конвертер для тестирования. Автомобиль приближается, так что не забудьте посмотреть будущие выпуски Mopar Muscle, чтобы увидеть, как выступит наша последняя модель гоночного брекета!
Ценник | |
Деталь | Стоимость |
Восьмидюймовый преобразователь Treemaster от ATI | $ 891.00 |
Восьмидюймовый преобразователь Treemaster MRT ATI | $ 1 033,00 |
Гидравлическая муфта | КСБ
Гидравлическая муфта состоит из рабочего колеса насоса (на входном валу) и рабочего колеса (на выходном валу). Обе крыльчатки размещены в одном корпусе.
См. Рис.1 Гидравлическая муфта
Рис.1 Гидравлическая муфта: Схема гидравлической муфты
Рабочее колесо насоса проталкивает жидкость внутри корпуса (обычно масло с низкой вязкостью) к рабочему колесу, что приводит к вращению выходного вала.Гидравлические муфты не имеют лопаток диффузора между насосом (индекс P ) и турбиной (индекс T ), в отличие от гидравлических преобразователей крутящего момента. Поскольку диффузор не поддерживается неподвижным кожухом, входной крутящий момент (T P ) и выходной крутящий момент (T T ) гидравлической муфты одинаковы.
T
P = T T = TЗначения мощности (P P = T · ω P ) и P T = T · ω T ) используются для расчета эффективности. гидромуфты.
ν Передаточное число между частотой вращения турбины и частотой вращения насоса
ω Угловая скорость
Когда частота вращения турбины (n T ) равна нулю, гидравлическая муфта имеет очень высокий крутящий момент. Если частота вращения турбины равна частоте вращения насоса (n T = n P ), крутящий момент (T) равен нулю. Однако во время передачи мощности всегда происходит проскальзывание, в результате чего частота вращения турбины ниже, чем у насоса.
См. Рис.2 Гидравлическая муфта
Рис.2 Гидравлическая муфта: характеристические кривые для различных объемов заполнения
Использование регулируемой черпаковой трубки для изменения объема заполнения (V) позволяет управлять проскальзыванием (1-ν) и, в свою очередь, скоростью турбины.
В соответствии с законами гидродинамического сродства скорость турбины также зависит от скорости насоса. См. Рис. 3 Гидравлическая муфта
Инжир.3 Гидравлическая муфта: кривые характеристик для различных скоростей насоса
Большое разнообразие конструкций означает, что характеристические кривые могут быть максимально согласованы с требованиями ведущей и ведомой машины. См. Рис. 4 и 5 Гидравлическая муфта
Рис. 4 Гидравлическая муфта: характеристические кривые для разного числа лопастей z Инжир.5 Гидравлическая муфта: характерные кривые гидравлических муфт с плоским сечением по внешнему диаметру и асимметричным рабочим колесом насоса и рабочим колесом турбины
В сочетании с редуктором (см. Зубчатую передачу) гидравлическую муфту иногда также называют редукторной муфтой переменной скорости. Механическое разделение входного и выходного валов гасит скачки крутящего момента и вибрации. Однако недостатком является то, что эффективность иногда значительно снижается (например,грамм. из-за повышения температуры гидромуфты) в результате проскальзывания. Этот недостаток можно уменьшить, комбинируя гидравлическую муфту с гидротрансформатором. В диапазоне низких частот вращения и мощности гидравлическая муфта принимает на себя ответственность за работу, тогда как в диапазоне частот от 80 до 100% входной и выходной валы жестко соединены. Это означает, что большая часть мощности может передаваться без проскальзывания или потерь, но позволяет гидротрансформатору одновременно продолжать увеличивать скорость вращения и мощность (например,грамм. питательного насоса котла) за счет разделения мощности с помощью планетарного редуктора (редуктора регулирования скорости).
ОСНОВНЫЕ ФУНКЦИОНАЛЬНЫЕ ТРЕБОВАНИЯ: Передайте «вращательную силу» с помощью гидравлическая муфта, а не механическая муфта. КОНСТРУКТИВНЫЕ ПАРАМЕТРЫ: Гидродинамический Привод (гидротрансформатор) — передает мощность через рециркулирующую жидкость в закрытом корпусе. ГЕОМЕТРИЯ / СТРУКТУРА:
ОБЪЯСНЕНИЕ, КАК ЭТО РАБОТАЕТ / ИСПОЛЬЗУЕТСЯ:
ДОМИНАНТНАЯ ФИЗИКА:
Гидротрансформатор получает питание от двигателя. P (дюйм) = T (дюйм) * w (дюйм) Часть входной мощности рассеивается в трансмиссионной жидкости внутри камера. Расчеты потерь мощности выходят за рамки данного объяснения и будет обозначаться как P (убыток). P (потери) = f (трение, вязкие эффекты, другие эффекты….) P (выход) = T (выход) * w (выход) = P (вход) — P (потери) = T (вход) * w (вход) — P (потери) … что также может быть описано в терминах КПД… P (выход) = h (м) * P (дюйм) ОГРАНИЧИТЕЛЬНАЯ ФИЗИКА: Эффективность ч ( м) = P (выход) / P (дюйм).Это функция вязкости жидкости, конструкция ребра в турбина и крыльчатка, T (выход), T (вход) и другие переменные. Гидротрансформаторы работают при КПД от 0 до 95% в зависимости от w (вход), w (выход), а также T (вход) и T (выход). Например, когда автомобиль останавливается на светофора, двигатель по-прежнему подает мощность на первичный вал, но тормоза и трансмиссия предотвращает вращение выходного вала. Поскольку P (out) = T (out) * w (out), а w (out) равно нулю, P (out) равно нулю.Следовательно, КПД равен нулю.Когда автомобиль движется со скоростью по шоссе, турбина вращается почти так же быстро, как крыльчатка. Напомним, что они прикреплены к выходному валу и входному валу соответственно, тогда P (in) P (out) и, следовательно, эффективность равна довольно высокий. УЧАСТКИ / ГРАФИКИ / ТАБЛИЦЫ:
ГДЕ НАЙТИ ПРЕОБРАЗОВАТЕЛИ МОМЕНТА: Гидротрансформатор находится непосредственно между двигателем и трансмиссией. кожухи на легковые и грузовые автомобили с автоматической коробкой передач.Значение крутящего момента преобразователь заключается в том, что он позволяет останавливать выходной вал без остановки двигателя, и без физического отключения входного и выходного валов. ССЫЛКИ / ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ: |
Как работает гидротрансформатор?
Преобразователи крутящего момента с автоматической коробкой передач
Вы когда-нибудь задумывались, что делает гидротрансформатор?
Преобразователь крутящего момента передает мощность от двигателя к коробке передач.
Без гидротрансформатора ваша автоматическая коробка передач не будет работать.Автомобили с автоматической коробкой передач не имеют сцепления, поэтому им нужен способ, позволяющий двигателю продолжать работать, пока колеса и шестерни трансмиссии останавливаются. В автомобилях с механической коробкой передач используется сцепление, которое отключает двигатель от трансмиссии. В автоматических трансмиссиях используется гидротрансформатор.
Гидротрансформатор — это муфта, в которой гидродинамика жидкости позволяет двигателю вращаться независимо от трансмиссии.
Когда двигатель работает на холостом ходу, например, при стоп-сигнале, величина крутящего момента, проходящего через преобразователь крутящего момента, мала, но все же достаточно, чтобы потребовать некоторого давления на педаль тормоза, чтобы остановить движение автомобиля. Когда вы отпускаете тормоз и нажимаете на газ, двигатель ускоряется и закачивает больше жидкости в преобразователь крутящего момента, в результате чего на колеса передается большая мощность (крутящий момент).
Как работает гидротрансформатор?
Гидротрансформатор состоит из трех основных частей.
1. Рабочее колесо
Первая часть гидротрансформатора в сборе называется крыльчаткой , также известной как насос. Он наполнен жидкостью и вращается вместе с коленчатым валом двигателя. Чем быстрее он вращается, тем больше силы создается, поскольку жидкость течет через него все быстрее и сильнее.
2. Турбина
Рабочее колесо нагнетает жидкость в узел лопаток, называемый турбиной . Турбина находится напротив крыльчатки и вращается, когда жидкость из крыльчатки ударяется о ее лопасти.По мере того, как жидкость протекает через турбину, она многократно переносится из внешней части во внутреннюю часть турбины, а затем возвращается к крыльчатке. Эта постоянная циркуляция жидкости от рабочего колеса к турбине, а затем обратно к рабочему колесу, создает гидравлическую «муфту».
3. Статор
Статор переворачивает жидкость и отправляет ее обратно к крыльчатке, тем самым замедляя движение жидкости. Когда трансмиссионная жидкость возвращается к крыльчатке, чтобы поддерживать цикл, создается крутящий момент.В этот момент жидкость течет в другом направлении, чем это было первоначально, когда она выходила из рабочего колеса. Здесь на помощь приходит статор. Статор — это еще одна серия ребер, расположенных между двумя турбинами на трансмиссионном валу. Его лопасти расположены под углом, так что, когда трансмиссионная жидкость втекает в них, она меняет направление и направляется обратно к крыльчатке. Когда автомобиль останавливается, односторонняя «муфта» статора заставляет его перестать вращаться, что приводит к разрыву гидродинамической цепи.
Наряду с крыльчаткой, турбиной и статором работают три ступени.
1. Стойло
Двигатель подает мощность на крыльчатку, но крыльчатка не вращается, потому что водитель продолжает нажимать на тормоз, например, при включении стоп-сигнала. Автомобиль не движется, но не глохнет.
2. Разгон
Ускорение происходит, когда водитель снимает ногу с тормоза и нажимает на педаль газа. Рабочее колесо начинает вращаться быстрее, и есть большая разница между частотой вращения рабочего колеса и турбины.Это создает крутящий момент, а гидротрансформатор увеличивает крутящий момент, необходимый для ускорения.
3. Муфта
Когда транспортное средство достигает крейсерской скорости, турбина вращается примерно с той же скоростью, что и рабочее колесо, и наращивание крутящего момента прекращается. На данном этапе гидротрансформатор представляет собой просто гидравлическую муфту. В автоматической трансмиссии используется так называемая муфта блокировки, чтобы «заблокировать» турбину на крыльчатке. Это исключает потерю мощности и обеспечивает плавное движение автомобиля.Поскольку крыльчатка установлена на корпусе гидротрансформатора, а преобразователь соединен с двигателем, крыльчатка получает энергию от двигателя. Турбина соединена с выходным валом, который передает мощность на трансмиссию. Вот почему вы можете почувствовать дрожь или дрожь, когда что-то пойдет не так с гидротрансформатором.
Проблемы с трансмиссией на самом деле могут быть в гидротрансформаторе.
Проблемы с гидротрансформатором могут быть неверно истолкованы как симптомы неисправной трансмиссии.
Не заблуждайтесь, думая, что вам нужен дорогостоящий ремонт или даже полная замена трансмиссии.
Точная проверка транспортного средства, проводимая квалифицированным и честным специалистом по трансмиссиям, расскажет вам, в чем проблема и какой ремонт вам нужен. Конечно, замена гидротрансформатора стоит недешево, но определенно дешевле, чем новая трансмиссия. Выявить причину проблемы с трансмиссией непросто. Местные специалисты AAMCO Colorado могут помочь. Это может быть просто утечка жидкости или что-то еще — наша проверка трансмиссии и проверка транспортного средства помогают нам найти проблемы и порекомендовать подходящие услуги.
Признаки неисправности гидротрансформатора очень похожи на признаки неисправности трансмиссии. Вот некоторые вещи, о которых следует знать.
Дрожь и дрожь
Если ваш автомобиль трясется и вздрагивает, это может означать, что муфта блокировки вышла из строя или нуждается в регулировке. Вы почувствуете, как машина трясется на скорости около 35-45 миль в час. Это проблема, которую нельзя пропустить. Такое ощущение, что едешь по тертой грунтовой дороге с множеством небольших гребней. Изношенная муфта блокировки может сделать переход от ускорения к крейсерской скорости, мягко говоря, неудобным — и это признак того, что вам нужно проверить трансмиссию.
Перегрев
Если ваш автомобиль регулярно перегревается, это может быть признаком низкого уровня трансмиссионной жидкости. Низкий уровень жидкости приводит к низкому давлению, что означает, что гидротрансформатор не может выполнять свою работу. Кроме того, недостаток жидкости может вызвать неисправность гидротрансформатора. Если преобразователь перегревается, он не сможет передавать мощность от двигателя к коробке передач. Это приводит к плохому ускорению и чрезмерному износу трансмиссии.
Скольжение
Поврежденное ребро гидротрансформатора может вызвать сбои в трансмиссии при переключении или полное выключение передачи.Это связано с тем, что крутящий момент двигателя не преобразуется в гидравлическое давление, необходимое трансмиссии для переключения передач. Пробуксовка также может быть вызвана слишком малым или слишком большим количеством жидкости в трансмиссии.
Повышенная скорость сваливания
Неисправный или неисправный преобразователь крутящего момента приведет к тому, что трансмиссия будет дольше взаимодействовать с двигателем. Это приводит к высокой скорости сваливания. Есть способ проверить это, но вы должны знать характеристики частоты вращения вашего двигателя и гидротрансформатора.Проще просто доставить свой автомобиль в AAMCO и позволить экспертам диагностировать его.
Странные звуки всегда являются признаком неприятностей…
Любые странные звуки, такие как щелчки, обороты, лязг или нытье, указывают на возможные проблемы с преобразователем крутящего момента или коробкой передач. В любом случае, вы не узнаете, пока не обратите внимание на эти шумы, не примете во внимание и не отнесете свой автомобиль к квалифицированному специалисту по трансмиссиям.
Связанные : Поддержание здоровой передачиПлохое обслуживание — плохой повод для проблем с трансмиссией.
Даже плохо построенная трансмиссия пострадает от плохого обслуживания. Такие вещи, как неправильный тип жидкости или неправильное количество жидкости, могут вызвать серьезные повреждения коробки передач. Неправильный уровень жидкости обычно является результатом плохого или несуществующего графика технического обслуживания, а также незнания того, что требуется для эффективного обслуживания автомобиля. Если вы регулярно проверяете трансмиссионную жидкость и меняете или промываете ее в соответствии с графиком технического обслуживания, рекомендованным производителем, вам не о чем беспокоиться.Если вы проверяете жидкость самостоятельно, обратите внимание не только на уровни, но и на цвета. Вот удобная диаграмма:
Игнорирование простых вещей, которые могут помочь или помешать вашей передаче, ускорит ее исчезновение.
AAMCO Colorado — ваши эксперты по трансмиссии
Посетите ближайший к вам центр по ремонту трансмиссий и полный автосервис AAMCO Colorado. Когда возникают более серьезные проблемы и вам требуется ремонт, восстановление или замена трансмиссии, назначьте встречу, пока не стало слишком поздно.
Если у вас есть вопросы о готовности вашего автомобиля к дороге или о ремонте и техническом обслуживании автомобилей, вам может помочь AAMCO Colorado. Вы также можете выйти в Интернет и использовать функцию «Спроси механика» AAMCO Colorado, чтобы задать вопросы по ремонту автомобилей. На них как можно скорее ответит настоящий механик AAMCO Colorado.
Гидротрансформатор: что это такое и как его исправить?
Drive и его партнеры могут получать комиссию, если вы покупаете продукт по одной из наших ссылок. Подробнее.
Автоматическая коробка передач — это что-то вроде родителя трехлетнего ребенка; он делает все за водителя. Хотите поменять? Просто переведите рычаг переключения передач в положение R. Хотите поехать? Установите рычаг в положение D, и водителю больше не придется беспокоиться о переключении передач. С помощью педали автомобиль может быстро разогнаться до 70 миль в час или остановиться по требованию.
В автоматических коробках передач простые дела кажутся обычными и пешеходными, но под их металлической оболочкой происходит множество сложных процессов, в том числе в зубчатых передачах и гидротрансформаторе.Преобразователь крутящего момента обеспечивает связующее звено между двигателем и сложными зубчатыми передачами, и без него автомобиль не двигался бы.
Чтобы лучше понять, как работает автоматическая коробка передач, важно понять, как работает гидротрансформатор. Жирная информационная команда Drive здесь, чтобы сломать его внутреннюю работу и объяснить, как все части объединяются для выполнения одной главной цели. Пойдем.
Что такое гидротрансформатор?
Гидротрансформатор — это устройство внутри корпуса автоматической коробки передач, установленное между двигателем и шестернями.По сути, это усовершенствованная гидравлическая гидравлическая муфта, гидротрансформатор передает и увеличивает крутящий момент двигателя, а также позволяет автомобилю полностью останавливаться, не касаясь трансмиссии и не переключая ее. Раньше в автомобилях использовались преобразователи крутящего момента без блокировки, но в большинстве современных автомобилей используются преобразователи крутящего момента с блокировкой.
Блокировка
Гидротрансформатор блокировки имеет встроенный механизм блокировки муфты. Как только трансмиссия определяет определенную скорость или частоту вращения двигателя, преобразователь крутящего момента будет использовать муфту для фиксации прямого соединения между входным и выходным валами для повышения эффективности.
Без блокировки
До того, как были изобретены муфты блокировки для максимального повышения эффективности, мы в основном принимали потери энергии, возникающие при передаче мощности между двигателем и трансмиссией из-за проскальзывания. Без муфты, блокирующей гидротрансформатор, турбина все еще может вращаться примерно на 90 процентов со скоростью крыльчатки, но они не достигают одинаковых скоростей. Таким образом, потеря энергии.
Что внутри гидротрансформатора?
Гидротрансформатор обычно состоит из четырех основных компонентов: крыльчатки, статора, турбины и диска сцепления.Эти части работают вместе в корпусе, заполненном жидкостью. Давайте разберемся, что делает каждая часть.
Рабочее колесо
Рабочее колесо, иногда называемое насосом, прикреплено к коленчатому валу двигателя и вращается вместе с ним. Когда рабочее колесо вращается, его лопасти улавливают жидкость, и центробежная сила выталкивает жидкость за пределы рабочего колеса. Чем быстрее он вращается, тем выше сила. Эта жидкость выбрасывается в турбину, которая обращена в противоположном направлении к крыльчатке.
Турбина
Когда жидкость ударяется о лопатки турбины, турбина раскручивает и направляет жидкость к центру турбины и обратно к статору и крыльчатке.Этот цикл продолжается круговыми движениями. Выходной вал турбины действует как входной вал для остальной части трансмиссии.
Статор
Крутящий момент невозможно преобразовать без статора, который иногда называют реактором — не волнуйтесь, не чернобыльский. Статор, небольшое устройство, похожее на крыльчатку, расположенное по центру между крыльчаткой и турбиной, принимает жидкость от турбины и определяет скорость потока жидкости. Из-за особого угла наклона лопаток статора жидкость течет обратно с меньшей скоростью, что увеличивает крутящий момент.
Сцепление
При определенных скоростях или об / мин диск фрикционной муфты будет зацепляться, чтобы заблокировать турбину на крыльчатке, чтобы поддерживать равные скорости вращения между ними.
Как работают преобразователи крутящего момента?
Гидротрансформатор работает по-разному в зависимости от действий водителя. Эти три этапа определяют, что происходит: срыв, ускорение и сцепление.
Срыв
Это происходит, когда автомобиль не движется или останавливается из-за торможения.Остановка не означает, что автомобиль заглохнет и заглохнет, скорее это означает, что крыльчатка вращается, а турбина — нет. Таким образом, двигатель работает, но автомобиль не движется.
Разгон
Когда водитель нажимает на педаль газа, крыльчатка увеличивает скорость вращения. Турбина движется с меньшей скоростью, и именно тогда происходит умножение крутящего момента.
Муфта
Муфта возникает, когда транспортное средство движется с высокой скоростью, а турбина вращается почти с той же скоростью, что и рабочее колесо.Когда это происходит, муфта входит в зацепление и фиксирует рабочее колесо на турбине, поэтому они вращаются с одинаковой скоростью.
Каковы признаки неисправного гидротрансформатора?
Вы узнаете, когда ваша передача данных прерывается. Как? Когда вы чувствуете один из следующих симптомов:
Пробуксовка и / или замедление ускорения
Если вы заметили проскальзывание трансмиссии, например, при невозможности кратко переключить передачи, причиной может быть неисправный преобразователь крутящего момента. Вы почувствуете, как будто мощность начинается и разбрызгивается, когда вы ускоряетесь.
Дрожание или тряска
Хорошая автоматическая коробка передач должна переключаться так плавно, чтобы водитель ее почти не замечал. Если ваша поездка трясется, трясется или вибрирует при попытке переключения передач, это может быть признаком того, что гидротрансформатор выходит из строя.
Жужжание или гудение
Автоматическая коробка передач не должна издавать каких-либо странных звуков, если она работает правильно. Если что-то не так с гидротрансформатором, водитель может заметить тихий гудящий или жужжащий звук, исходящий из коробки передач.
Утечки
Автоматические коробки передач и гидротрансформаторы внутри них заполнены трансмиссионной жидкостью. Если одно из многих уплотнений трансмиссии выйдет из строя, жидкость может вытечь и подвергнуть вашу трансмиссию опасности. Если вы заметили капли жидкости, осмотрите источник и немедленно произведите необходимый ремонт.
Сколько стоит замена гидротрансформатора?
Если вы решите заменить гидротрансформатор самостоятельно, то эта деталь, вероятно, будет стоить примерно 100-600 долларов, в зависимости от автомобиля.Но это означает, что вы сами откажетесь от передачи. Если вы решите отнести проблему в магазин, она, вероятно, будет стоить от 500 до 1000 долларов.
Стоит ли ремонтировать гидротрансформатор самостоятельно?
Если у вас нет опытного друга, который раньше выполнял подобную работу, чтобы направлять вас (мы с радостью будем звонить на дом, но пандемия, понимаете?), Неопытным механикам в гараже будет лучше оставить проблемы с трансмиссией плюсы. Они чрезвычайно сложны, и чтобы добраться до них, нужно отсоединить двигатель от двигателя, что может оказаться сложной задачей без подходящих инструментов.В этом случае, возможно, вам будет лучше принять его.
Описание преобразователей крутящего моментаTCI
Описание преобразователей крутящего момента
-Преобразователи крутящего момента — это устройства с гидравлической муфтой, которые также действуют как tq. множитель при начальном ускорении.
1) Рабочее колесо насоса — Рабочее колесо насоса представляет собой внешнюю половину преобразователя на стороне передачи линии сварки. Внутри крыльчатого насоса находится ряд продольных ребер, которые направляют жидкость по внешнему диаметру в турбину, поскольку этот компонент приварен к крышке, которая прикреплена болтами к гибкой пластине.Размер гидротрансформатора (и насоса), а также количество и форма ребер влияют на характеристики преобразователя. Если целью является долгий срок службы гидротрансформатора, чрезвычайно важно, чтобы лопасти крыльчатого насоса были надлежащим образом усилены от усталости, а внешний корпус не деформировался под нагрузкой.
2) Статор — Статор можно охарактеризовать как «мозг» преобразователя крутящего момента, хотя он не является единственным фактором, определяющим функции и характеристики преобразователя.Статор, который изменяет поток жидкости между турбиной и насосом, — это то, что делает преобразователь крутящего момента преобразователем крутящего момента (мультипликатором), а не только гидравлической муфтой. При снятом статоре преобразователь не сохранит никакого эффекта умножения крутящего момента.
ДЛЯ НАДЛЕЖАЩЕЙ РАБОТЫ СТАТОРА ПЛАТФОРМА ДОЛЖНА РАБОТАТЬ В СООТВЕТСТВИИ С НАЗНАЧЕНИЕМ:
- Он должен удерживать статор совершенно неподвижным (заблокированным на месте), пока преобразователь находится в режиме остановки (низкая относительная скорость турбины относительно скорости крыльчатого насоса).
- Он должен позволять статору вращаться вместе с остальной частью преобразователя после того, как скорость турбины приближается к скорости насоса. Это обеспечивает более эффективный и менее ограничительный поток жидкости. Обгонная муфта представляет собой одностороннюю механическую муфту, установленную между двумя дорожками качения, которая устанавливается внутри статора, в то время как внутренняя дорожка скольжения заходит на опору статора трансмиссии.
3) Крышка — Крышка (также называемая передней частью) представляет собой внешнюю половину корпуса по направлению к двигателю от линии сварки.Крышка служит для крепления преобразователя к гибкой пластине (двигателю) и вмещает жидкость. Хотя крышка не принимает активного участия в характеристиках производительности, важно, чтобы она оставалась жесткой при нагрузках (скручивающих и осевых напряжениях, а также огромном гидравлическом давлении, создаваемом внутри преобразователя крутящего момента).
.