Двойная турбина: Система двойного турбонаддува TwinTurbo: описание, принцип работы – Турбонаддув — Википедия

Турбонаддув — Википедия

Турбонаддув — один из методов агрегатного наддува, основанный на использовании энергии отработавших газов. Основной элемент системы — турбокомпрессор.

Принцип турбонаддува был запатентован Альфредом Бюхи в 1911 году в патентном ведомстве США[1].

История развития турбокомпрессоров началась примерно в то же время, что и постройка первых образцов двигателей внутреннего сгорания. В 1885—1896 г. Готлиб Даймлер и Рудольф Дизель проводили исследования в области повышения вырабатываемой мощности и снижения потребления топлива путём сжатия воздуха, нагнетаемого в камеру сгорания. В 1905 г. швейцарский инженер Альфред Бюхи впервые успешно осуществил нагнетание при помощи выхлопных газов, получив при этом увеличение мощности до 120 %. Это событие положило начало постепенному развитию и внедрению в жизнь турботехнологий.

Сфера использования первых турбокомпрессоров ограничивалась чрезвычайно крупными двигателями, в частности, корабельными. В авиации с некоторым успехом турбокомпрессоры использовались на истребителях с двигателями Рено ещё во время Первой Мировой войны. Ко второй половине 1930-х развитие технологий позволило создавать действительно удачные авиационные турбонагнетатели, которые у значительно форсированных двигателей использовались в основном для повышения высотности. Наибольших успехов в этом достигли американцы, установив турбонагнетатели на истребители P-38 и бомбардировщики B-17 в 1938 году. В 1941 году США был создан истребитель P-47 с турбонагнетателем, обеспечившим ему выдающиеся летные характеристики на больших высотах.

В автомобильной сфере первыми начали использовать турбокомпрессоры производители грузовых машин. В 1938 г. на заводе «Swiss Machine Works Sauer» был построен первый турбодвигатель для грузового автомобиля. Первыми массовыми легковыми автомобилями, оснащенными турбинами, были Chevrolet Corvair Monza и Oldsmobile Jetfire, вышедшие на американский рынок в 1962—1963 г. Несмотря на очевидные технические преимущества, низкий уровень надежности привел к быстрому исчезновению этих моделей.

Начало использования турбодвигателей на спортивных автомобилях, в частности, на Formula 1, в 70-х годах привело к значительному увеличению популярности турбокомпрессоров. Приставка «турбо» стала входить в моду. В то время почти все производители автомобилей предлагали как минимум одну модель с бензиновым турбодвигателем. Однако, по прошествии нескольких лет мода на турбодвигатели начала проходить, так как выяснилось, что турбокомпрессор, хотя и позволяет увеличить мощность бензинового двигателя, сильно увеличивает расход топлива. На первых порах задержка в реакции турбокомпрессора была достаточно большой, что также являлось серьёзным аргументом против установки турбины на бензиновый двигатель.

Коренной перелом в развитии турбокомпрессоров произошёл с установкой в 1977 г. турбокомпрессора на серийный автомобиль Saab 99 Turbo и затем в 1978 г. выпуском Mercedes-Benz 300 SD, первого легкового автомобиля, оснащенного дизельным турбодвигателем. В 1981 г. за Mercedes-Benz 300 SD последовал VW Turbodiesel, сохранив при этом значительно более низкий уровень расхода топлива. Вообще, дизельные двигатели имеют повышенную степень сжатия и, вследствие адиабатного расширения на рабочем ходу, их выхлопные газы имеют более низкую температуру. Это снижает требования к жаропрочности турбины и позволяет делать более дешёвые или более изощрённые конструкции. Именно поэтому турбины на дизельных двигателях встречаются гораздо чаще, чем на бензиновых, а большая часть новинок (например, турбины с изменяемой геометрией) сначала появляется именно на дизельных двигателях.

Принцип работы основан на использовании энергии отработавших газов. Поток выхлопных газов попадает на крыльчатку турбины (закреплённой на валу), тем самым раскручивая её и находящиеся на одном валу с нею лопасти компрессора, нагнетающего воздух в цилиндры двигателя. Так как при использовании наддува воздух в цилиндры подаётся принудительно (под давлением), а не только за счёт разрежения, создаваемого поршнем (это разрежение способно взять только определённое количество смеси воздуха с топливом), то в двигатель попадает большее количество смеси воздуха с топливом. Как следствие, при сгорании увеличивается объём сгораемого топлива с воздухом, образовавшийся газ находится под большим давлением и соответственно возникает большая сила, давящая на поршень.

[стиль]

Как правило, у турбодвигателей меньше удельный эффективный расход топлива (грамм на киловатт-час, г/(кВт·ч)) и выше литровая мощность (мощность, снимаемая с единицы объёма двигателя — кВт/л), что даёт возможность увеличить мощность небольшого мотора без увеличения оборотов двигателя.

Вследствие увеличения массы воздуха, сжимаемой в цилиндрах, температура в конце такта сжатия заметно увеличивается и возникает вероятность детонации. Поэтому конструкцией турбодвигателей предусмотрена пониженная степень сжатия, применяются высокооктановые марки топлива, предусмотрен промежуточный охладитель наддувочного воздуха (интеркулер), представляющий собой радиатор для охлаждения воздуха. Уменьшение температуры воздуха требуется также и для того, чтобы плотность его не снижалась вследствие нагрева от сжатия после турбины, иначе эффективность всей системы значительно упадёт.

[стиль]Турбонаддув особенно эффективен в дизельных двигателях тяжёлых грузовых автомобилей. Он повышает мощность и крутящий момент при незначительном увеличении расхода топлива.[источник не указан 422 дня] Находит применение турбонаддув с изменяемой геометрией лопаток турбины в зависимости от режима работы двигателя.

Наиболее мощные (по отношению к мощности двигателя) турбокомпрессоры применяются на тепловозных двигателях. Например, на дизеле Д49 мощностью 4000 л.с. установлен турбокомпрессор мощностью 1100 л.с.

[источник не указан 422 дня]

Наибольшей (по абсолютной величине) мощностью обладают турбокомпрессоры судовых двигателей, которая достигает нескольких десятков тысяч киловатт (двигатели MAN B&W).[источник не указан 422 дня]

Кроме турбокомпрессора и интеркулера в систему входят: регулировочный клапан (wastegate) (для поддержания заданного давления в системе и сброса давления в приёмную трубу), перепускной клапан (bypass valve — для отвода наддувочного воздуха обратно во впускные патрубки до турбины в случае закрытия дроссельной заслонки) и/или «стравливающий» клапан (blow-off valve — для сброса наддувочного воздуха в атмосферу с характерным звуком, в случае закрытия дроссельной заслонки, при условии отсутствия датчика массового расхода воздуха), выпускной коллектор, совместимый с турбокомпрессором, или кастомный даунпайп, а также герметичные патрубки: воздушные для подачи воздуха во впуск, масляные для охлаждения и смазки турбокомпрессора.

Задержка турбокомпрессора («турбояма») — это время, необходимое для изменения выходной мощности после изменения состояния дроссельной заслонки, проявляющееся в виде замедленной реакции на открытие дроссельной заслонки по сравнению с поведением безнаддувного двигателя. Это связано с тем, что выхлопной системе и турбонагнетателю требуется время для раскрутки, чтоб обеспечить требуемый поток нагнетаемого воздуха. Инерция, трение и нагрузка на компрессор являются основными причинами задержки турбокомпрессора.

Супертурбо: все продвинутые системы наддува

 Битурбо, твинтурбо, твинскролл... Наверняка вы давно хотели разложить для себя по полочкам, что как работает и чем отличается. Мы подготовили для вас подробный рассказ о плюсах, минусах и надежности каждой из технологий. 

Я предельно упростил формулировки, чтобы текст был доступен для понимания широкому кругу читателей. Но для лучшего понимания вопроса рекомендую прочитать мои прошлые публикации о

видах наддува и надежности турбомоторов.

Прогресс не стоит на месте, и каждое новое поколение автомобилей должно быть быстрее, экономичнее и мощнее. Часто для повышения мощности используются комбинированные системы наддува, да и «обычные» турбины вовсе не так просты, как кажется на первый взгляд. Каким же образом инженеры научили турбомоторы быть одновременно мощными, эластичными и экономичными? Какие технологии позволяют создавать массовые двигатели с удельной мощностью в 150 л.с. на литр и отличной тягой на низах, и тысячесильных монстров?

«Обычная» турбина

Как я уже писал, турбокомпрессор прост на первый взгляд, но является высокотехнологичным устройством, которое работает в очень жестких условиях. И любое его усложнение сильно сказывается на надежности. Для примера я постараюсь подробнее описать устройство типичного турбокомпрессора без особых усложнений.

Depositphotos_7428450_original.jpg

Основной частью турбокомпрессора является средний корпус, в нем расположены подшипники скольжения, упорный подшипник и седло уплотнения с кольцами. В самом корпусе есть каналы для прохождения через него масла и охлаждающей жидкости. На совсем старых конструкциях обходились только маслом и для смазки и для охлаждения, но такие турбины не применяются на серийных машинах уже давно. Для предохранения среднего корпуса от воздействия горячих выхлопных газов служит жароотражатель.

В средний корпус устанавливается турбинный вал. Эта деталь не просто вал, конструктивно он соединен с турбинным колесом неразъемным соединением, чаще всего сваркой трением или выполнен из цельного куска металла. Иногда для создания крыльчатки используется керамика-прочности и коррозийной устойчивости лучших конструкционных сталей может не хватать. Сам вал имеет сложную форму, на нем есть утолщение для уплотнения и упорный выступ, а форма цилиндрической части рассчитана с учетом теплового расширения во время работы.

На турбинный вал надевается компрессорное колесо. Оно изготовлено обычно их алюминия и фиксируется на валу гайкой.

Конструкция из среднего корпуса, установленного в него турбинного вала и компрессорного колеса называется картриджем. После сборки этот узел тщательно балансируется, ведь работает он при очень высоких оборотах и малейший дисбаланс быстро выведет его из строя.

Еще турбине нужны две «улитки» — турбинная и компрессорная. Часто они индивидуальны для каждого производителя машин, тогда как центральная часть — картридж и размеры турбинного и компрессорного колеса являются признаками конкретной модели турбины и ее модификации.


Depositphotos_1910342_original.jpg

Для предохранения от слишком высокого давления наддува используется клапан сброса давления газов, он же вастегейт. Обычно он является частью турбинной улитки и управляется вакуумом. Он закрыт при обычном режиме работы турбины и открывается в случае слишком высокого давления наддува или других проблем в работе мотора, сбрасывая скорость вращения турбины.

А теперь о том, как используют турбины и какие технологии применяют, чтобы достичь самых высоких показателей моторов.

Twin-turbo и Bi-turbo

Чем больше и мощнее мотор, тем больше воздуха нужно подавать в цилиндры. Для этого нужно сделать турбину больше или быстрее. А чем больше размер турбины, тем тяжелее ее крыльчатки и тем инерционнее она получается. При нажатии на педаль газа открывается дроссельная заслонка и больше горючей смеси попадает в цилиндры. Образуется больше выхлопных газов и они раскручивают турбину до более высокой частоты вращения, что, в свою очередь, увеличивает количество подаваемой горючей смеси в цилиндры. Чтобы сократить время раскрутки турбин и сопутствующую им «турбояму», изначально испробовали способы, которые называются твин-турбо и би-турбо.

Это две разные технологии, но маркетологи компаний-производителей внесли немало путаницы. Например, на Maserati Biturbo и Mercedes AMG Biturbo на самом деле используют технологию твин-турбо. Так в чем же разница? Изначально Twin Turbo («турбины-близнецы») называлась технология, при которой выхлопные газы разделялись на два равных потока и распределялись на две одинаковые турбины малого размера. Это позволяло получить лучшее время отклика, а иногда и упростить конструкцию мотора, используя недорогие турбокомпрессоры, что очень актуально для V образных двигателей с выхлопными коллекторами «вниз».


autowp.ru_nissan_vr38dett_1.jpg

Фото:twin turbo Nissan


Обозначение Biturbo («двойная турбина») же относят к конструкциям, в которых применяются последовательно подключенные ко впуску две турбины-маленькую и большую. Маленькая хорошо работает на малой нагрузке, быстро раскручивается и обеспечивает тягу «на низах», а потом в действие вступает большая турбина, более эффективная на большой нагрузке. Маленькая турбина в этот момент отключается системой дроссельных заслонок.

Преимуществом такой схемы является большая эффективность одной большой турбины на большой нагрузке: она обеспечивает лучшее давление и меньший нагрев воздуха при большом ресурсе. А еще вместо маленького турбокомпрессора можно использовать механический или электронагнетатель. Они нагревают воздух меньше, чем турбокомпрессор, и не инерционны.

Но как же потери мощности, которые нужны для их раскрутки? Потери на их привод при малой нагрузке не так существенны. Но расплатой за улучшение характеристик турбин является усложнение впускной системы, приходится использовать много труб и дроссельные заслонки, переключающие потоки воздуха.

Обе технологии используются до сих пор всеми производителями, но все они значительно удорожают мотор, ведь дорогих турбокомпрессоров становится в два раза больше, а система управления ими — сложнее. Для сильно форсированных моторов альтернативы этим технологиям нет или почти нет. Но иногда можно просто улучшить конструкцию стандартной турбины.

Тонкое управление вастегейтом

Wastegate – это, дословно, «ворота для сброса», то есть перепускной клапан. На первых турбинах вастегейт работает очень просто: когда давление на впуске преодолевало натяжение пружины, он открывался, стравливал газы и давление падало. Позже систему усложнили: теперь его открытием руководила не только разница давлений, но и электроника, учитывающая множество параметров — обогащение смеси, режим движения, температуру, детонацию и умеющую избегать нежелательных режимов работы самой турбины. Но управлялся он точно так же — пневматикой. Когда нужно было сбросить давление, клапан просто открывался.


10843910_1460545824166224_976532262_n.jpg

Получить качественный скачок характеристик позволяла плавная регулировка степени открытия перепускного клапана. В этом случае турбина может чаще работать с максимальной отдачей, даже при малых оборотах, а на средних нагрузках уже вступает в действие регулирование и в опасные режимы турбина не переходит.

К сожалению, такой способ сложнее. Для его реализации потребовалось разместить электропривод регулировки рядом с турбиной, что понизило ее надежность: электронике приходится работать в очень жестких условиях, при высокой температуре и высокой вибрации. Но улучшение характеристик стоит того и почти все современные турбины высокофорсированных небольших моторов имеют такую конструкцию.

Более эффективное турбинное колесо. Twinscroll

В поисках повышения эффективности одиночной турбины конструкторская мысль придумала способ, который позволял увеличить эффективность работы турбины и на малых и на больших нагрузках. Турбинное колесо, на которое воздействуют выхлопные газы, разделили на две части, отсюда и название технологии – twin scroll (“двойная улитка”), одна часть турбины более эффективна на большой нагрузке, а другая — на малой, но раскручивают они одно и то же компрессорное колесо на общем валу. Турбина получается не намного сложнее, но несколько эффективнее.


Depositphotos_1910342_original.jpg

В сочетании с подводом выхлопных газов к разным частям «улитки» от разных групп цилиндров и точной настройки это позволяет получить неплохую прибавку производительности без ухудшения характеристик в зоне малых оборотов. Конечно, такая турбина не даст максимальной возможной мощности, но зато такой мотор будет тяговитее и на практике удобнее и быстрее.

Более эффективное турбинное колесо – турбины с изменяемой геометрией

В твин-скролл турбине выхлопные газы разделяются на два потока и один всегда работает с меньшей эффективностью, чем возможно. Но есть и другой способ! Можно регулировать направляющий аппарат турбинного колеса, и выхлопные газы будут работать всегда с максимальной эффективностью. Все это требует весьма сложной механической системы, расположенной в самой горячей части турбины-на выхлопной «улитке». И сложного механизма управления.

Геометрию впускного канала турбины изменяют с помощью направляющих лопаток. На малых оборотах, когда давление выхлопных газов малое, лопатки, поворачиваясь, сужают канал. Через узкое отверстие газы проходят с более высокой скоростью, обеспечивая быструю раскрутку турбины. Когда обороты мотора растут, лопатки пропорционально растущему давлению газов расширяют отверстие, и скорость вращения турбины остается стабильной.

Сначала такие устройства стали применять на турбинах для дизельных моторов — у них ниже температура выхлопных газов, а значит и условие работы тонкой механики лучше. Постепенно технология появилась на в турбинах для бензиновых моторов. Усложнилась и система управления. Вместо изначальной пневматики (как и в случае с вастгейтом), управлять направляющими лопатками стал шаговый электромоторчик.


autowp.ru_toyota_prius_1.jpg

Резкое усложнение турбины сказывается и на ее стоимости и на ее надежности. Но в высокофорсированных дизельных моторах отказаться от такого эффективного способа сложно, а простое умножение числа турбин не позволяет добиться такого же эффекта. А в мире бензиновых моторов эта технология все еще используется не так уж часто.

Улучшение механики турбин

Подшипники качения (с шариками) имеют намного лучшие характеристики, чем подшипники скольжения (с маслом) — это практически аксиома. Они позволяют уменьшить трение, а значит сделать вращение турбины легким, уменьшить массу вала, снизить зависимость от давления масла. Но высокоточные и очень «выносливые» подшипники качения для огромных скоростей вращения и температур массово стали применять сравнительно недавно.

Турбины на керамических (а не металлических) подшипниках качения надежнее и долговечнее, они не боятся потери давления масла и остановок, менее чувствительны к вибрациям и перегреву. Разумеется, они дороже турбин прошлого поколения, и серийные модели машин с ними появились только недавно, но в автоспорте их возможности оценили уже давно. Например турбины IHI VF серии или Garrett GTxxR/RS применяются на тюнинговых машинах уже много лет.

В заключение

Постепенно новые технологии дешевеют и внедряются на все более массовых машинах. Для последнего поколения моторов почти обязательным атрибутом стало электронное регулирование работы турбины. Все чаще применяются twinscroll-варианты. На больших V образных моторах почти всегда используют технологию twin-turbo, но и турбины при этом не простые, а использующие весь необходимый арсенал новых технологий изготовления.

В сочетании с прямым впрыском топлива это позволяет создавать моторы, характеристики которых еще лет десять назад сочли бы фантастическими — при мощности в 400-500 лошадиных сил они довольствуются 95-м бензином, да и его «едят» не сильно больше, чем малолитражки недавнего прошлого. Что же до надежности современных моторов, то об этом я уже рассказывал в другой статье, ведь в технике ничто не дается просто так.

<a href=»http://polldaddy.com/poll/8537901/»>Считаете ли Вы системы Twin и Bi турбонаддува достаточно отлаженной для установки в массовые машины?</a>


Читайте также


Вот это турбо!: Двойной регулируемый турбонаддув

Двойной регулируемый турбонаддув с парой компрессоров, которые запускаются энергией отработавших газов, делают дизельные двигатели BMW самыми мощными в своем классе.

Двойной регулируемый турбонаддув (Variable Twin Turbo) действительно можно назвать новым прорывом в дизельном двигателестроении. Эта технология увеличивает мощность на 25%, улучшает приемистость двигателя даже на низких оборотах и увеличивает мощность — на высоких.

Центральным элементом этой системы являются два турбокомпрессора — маленький и большой. Компрессоры включаются на разных оборотах, а не одновременно, как в параллельных системах, так называемых bi-Turbo. Работа компрессоров точно скоординирована, поэтому в некоторых режимах работает лишь один из них, а в других — сразу оба.

К примеру, на низких оборотах всасываемый атмосферный воздух свободно проходит через отключенный большой компрессор и затем попадает в маленький, который и нагнетает давление в этом режиме. Даже при скорости всего в 1500 об./мин. дизельный двигатель, оснащенный такой системой двойного регулируемого турбонаддува, может развивать огромный крутящий момент — 530 Нм.

На средних оборотах уже подключается большой компрессор, нагнетающий воздух в маленький, который дополнительно увеличивает давление. Максимальный крутящий момент в 580 Нм достигается уже на 1750 об./мин. Ну а на еще более высоких оборотах (3250 об./мин. и выше) воздух в цилиндры нагнетает только большой компрессор. Специально настроенный на высокие обороты, он производит 210 кВт (286 л. с.) при 4400 об./мин.

Более высокое давление воздуха во впускном тракте повышает эффективность сжигания дизельного топлива в цилиндрах. В итоге, несмотря на впечатляющие характеристики такого дизельного двигателя, он вовсе не «прожорлив», а система очистки выхлопа с сажевым фильтром обеспечивает выполнение жестких норм токсичности «Евро-4».

Двойной регулируемый турбонаддув обеспечивает рядные 6-цилиндровые двигатели BMW невиданными характеристиками, на которые ранее были способны лишь более крупные 8-цилиндровые двигатели. При этом токсичность и расход топлива остаются очень низкими. Помогают двигателям и другие инновационные технологии — такие, как система Common Rail, о которой мы уже рассказывали («Точный впрыск»).

В результате двигатели BMW X5 Top Diesel демонстрируют поистине впечатляющие характеристики: мощность — 286 л.с. уже при 4400 об./мин., максимальный крутящий момент — 580 Нм при 1750 об./мин; максимальная скорость — 235 км/ч, разгон до 100 км/ч — за 7 секунд. А главное, что поражает — расход топлива при этих показателях. В городе на 100 км уходит 11,1 л, за городом — 7,5 л, а в смешанном цикле — 8,8 л. Да и выбросы углекислого газа невысоки, от от 233 г/км.

Twin-turbo, Bi-turbo, Wastegate и Twinscroll Новости дня — Свободная Пресса

В современном мире к автомобилям предъявляют жесткие требования. При смене поколений они должны стать мощнее, быстрее и при этом экономичнее. Поэтому инженеры вовсю «шаманят» с системой турбонаддува. Благодаря их стараниям из условного ДВС объемом в 1 литр удалось «выжать» порядка 150 вполне реальных «лошадок». Постараемся разобраться, как такое возможно.

«Двойная турбина» и «турбины-близнецы»

Кто хотя бы немного знаком с устройством силового агрегата, знает, что габаритному и мощному мотору необходимо большое количество воздуха в цилиндрах. Справиться с этой задачей способна турбина, причем увеличенная в размерах и максимально шустрая.

Вес крыльчатки напрямую зависит от величины турбины. Чем больше последняя, тем тяжелее первая. Когда водитель нажимает на газ, дроссельная заслонка открывается и в цилиндры отправляется необходимое количество «горючки». Это приводит к появлению в больших количествах выхлопных газов, что способствует сильному раскручиванию турбины. Чтобы сэкономить время на ее «раскачку» и минимизировать ущерб от традиционной «турбоямы», в современном моторостроении используют две технологии — twin-turbo («турбины-близнецы») и bi-turbo («двойная турбина»).

На деле, это непохожие друг на друга технологии. Но из-за неточных формулировок маркетологов произошла путаница. Запуталась даже «элита» — Maserati и Mercedes AMG имеют модели с пометкой «Biturbo». На деле, в этих автомобилях используется система твин-турбо.

Первоначально под twin-turbo подразумевалась конструкция, разделяющая выхлопные газы на два одинаковых «отряда». И каждый из них направлялся «нести службу» на свою, небольшую турбину. Благодаря такому распределению уменьшался вес крыльчаток, сокращалось время «раскачки», а также упрощался сам силовой агрегат (можно было задействовать более простые турбокомпрессоры).

Конструкция bi-turbo отличается тем, что к впуску последовательно присоединены две разные по размеру турбины — одна меньше, другая, соответственно, побольше. Первая обеспечивает эффективную тягу «на низах», при небольшой нагрузке, и хорошо раскручивается. Как только нагрузка возрастает, в дело вступает большая турбина, а дроссельные заслонки в это время отключают ее маленькую «сестру». Главная проблема «двойной турбины» — усложнение всего узла. Ведь там «налеплено» множество трубок, плюс дроссельные заслонки. Эти технологии сильно влияют на цену силового агрегата. Но для форсированных двигателей пока альтернативы не придумали.

Wastegate

Изначально от wastegate (перепускной клапан) не требовалось ничего фантастического. Он срабатывал после того, как давление справлялось с натяжением рабочей пружины. Благодаря открывшемуся клапану газы отводились и давление падало.

Затем для wastegate задачку усложнили. Он стал подчиняться не только давлению, но и электронике, которая следила за происходящим (температура, режим движения, детонация и так далее). Но управлялся перепускной клапан по старинке — пневматикой. Когда появлялась необходимость снизить давление, он открывался.

Необходимые изменения характеристик достигаются за счет точной регулировки работы клапана. Благодаря этому турбина даже на небольших оборотах способна работать максимально эффективно. Главная проблема этой технологии — это ее сложность и невысокие показатели надежности. Ведь электронике приходится трудиться в неблагоприятных условиях: тут и температура зашкаливает, и вибрация сильная.

Twinscroll

Мысль об улучшении работоспособности одной турбины долго время не давала конструкторам покоя. И решение, как увеличить ее эффективность при различных нагрузках, все-таки было найдено.

Турбинное колесо взяли, да и разделили на две части. Собственно, twinscroll переводится как «двойная улитка». Это решение привело к тому, что один «кусок» турбины эффективнее всего при малой нагрузке, а другой — при высокой. В результате, конструкция получается не слишком сложной, а КПД системы увеличивается. Однако из-за «жесткого» разделения турбины агрегат все-таки не способен реализовать максимум возможностей.

Механика турбин

Как известно, подшипники качения имеют определенное преимущество перед «коллегами» — подшипниками скольжения. Заключается оно в уменьшенном трении. Поэтому подшипникам с шариками под силу сделать раскручивание турбины еще более быстрым и легким, снизить вес вала и уменьшить роль давления.

Именно турбины, оснащенные керамическими подшипниками качения, отличаются надежностью и долговечностью. Они не слишком чувствительны к изменению давления наддува, и не слишком восприимчивы к перегреву и сильной вибрации (в отличие от турбин традиционной конструкции).

Понятно, что турбины с такими «наворотами» получаются существенно дороже. Тем не менее, ими постепенно стали оснащать и серийные авто. А всю прелесть керамических турбин по полной программе оценили в автомобильном спорте.

Итог

Новые технологии через короткий промежуток времени перестают быть эксклюзивными. А значит, теряют в цене и становятся более доступными для массового производства.

Например, большинство современных двигателей оснащено электронным контролем турбины. Twinscroll постепенно уходит «в народ». А без twin-turbo не обходится практически не один серьезный V-образный силовой агрегат. Проблемы, конечно, остаются. Главная из них — невысокий запас прочности турбин, дороговизна их ремонта и обслуживания. Но ведь приходится чем-то жертвовать ради технического прогресса!

Турбонаддув

Турбонаддув – способ увеличения мощности двигателя автомобиля за счет увеличения подачи воздуха в цилиндры, не изменяя при этом его (двигателя) объема.

Основной элемент системы – турбокомпрессор, состоящий из турбины и компрессора (нагнетателя). Причем турбина начинает работать как только происходит запуск двигателя, а компрессор только с определенного числа оборотов. Роль обогащения топливо-воздушной смеси кислородом отведена компрессору (нагнетателю). Происходит этот процесс за счет использования энергии отработавших газов. Колеса («крыльчатки») турбины и компрессора закреплены на одном валу. Выхлопные газы через выпускной коллектор попадают в корпус турбины, раскручивая ее колесо, которое в свою очередь раскручивает колесо компрессора, вследствие чего осуществляется всасывание воздуха из атмосферы в компрессор, и уже в нем его сжатие и нагнетение во впускное отверстие.

Так как сжатие воздуха сопровождается его нагревом, что приводит к уменьшению плотности, а как следствие к снижению и эффективности наддува в системах турбоннадува применяется интеркулер – своеобразный «промежуточный радиатор» (между компрессором и цилиндрами) для охлаждения воздуха, подаваемого в цилиндры. Интеркулеры бывают двух видов: воздухо-воздушный и водо-воздушный. В автомобилях преимущественно используются воздухо-воздушные интеркулеры, располагающиеся, как правило, либо фронтально (перепендикулярно продольной оси автомобиля) – обычно пространство перед/под радиатором двигателя, либо горизонтально над двигателем.

Твин-турбо (би-турбо) – система «сдвоенного» наддува, в которой применяется два турбокомпрессора, то есть две турбины и два компрессора.

5 — литровый 10-цилиндровый TFSI двигатель Audi RS 6.
Фото Audi.

Параллельная система «сдвоенного турбонаддува» (Parallel twin-turbo). Представляет собой конфигурацию турбонаддува, в которой два идентичных турбокомпрессора в равной степени разделяют между собой работу по нагнетанию воздуха в цилиндры. Каждый из них действует на свой ряд цилиндров и функционирует за счет половины отработавших газов двигателя.

Секвентальная система «сдвоенного турбонаддува» (Sequential twin-turbo). В такой конфигурации также два турбокомпрессора – один меньшего размера, другой большего. Работают они последовательно: на низких оборотах двигателя, когда энергии выхлопных газов не хватает для раскрутки колеса большой турбины, работает маленький, на высоких подключается большой.

Турбина с изменяемой геометрией

В настоящее время наряду с системами «сдвоенного турбонаддува» все большее распространение получают системы наддува с изменяемой геометрией, то есть с изменением сечения на входе колеса турбины. Происходит это за счет поворота небольших лопастей вокруг «крыльчатки».

Движение воздуха при закрытых лопастях.
Фото Porsche.

Движение воздуха при открытых лопастях.
Фото Porsche.

Уменьшение сечения на низких оборотах (при недостаточном для раскрутки колеса турбины количестве выхлопных газов) способствует увеличению мощности потока отработавших газов. Когда же двигатель работает на высоких оборотах, и мощность потока газов возрастает, сечение увеличивается так, чтобы обеспечить достаточный двигателю «наддув», избежав при этом перегрузки турбокомпрессора.

Турбина с изменяемой геометрией (Вид в разрезе).
Фото Porsche.

По сравнению с «традиционными» турбокомпрессорами, имеющими в своей конструкции перепускной клапан, регулирующий обороты турбины, а следовательно и производительность компрессора, турбокомпрессоры с изменяемой геометрией более экономичны (естественно, относительно расхода топлива) и экологичны при более высокой мощности.

Разработка подобных систем наддува, помимо снижения затрат на топливо и выброса вредных веществ в атмосферу, направлена еще и на повышение производительности двигателей – исключения такого явления, как турбо-яма (турбо-лаг), когда на низких оборотах двигателя давления выхлопных газов недостаточно для раскрутки турбины, и только на высоких оборотах двигатель раскрывает свою истинную сущность, обозначенную «шильдиком» «turbo». «На пальцах»…чтобы понять, что такое турбо-яма нужно сесть за руль автомобиля, оснащенным простым турбо-двигателем, проехать какое-то растояние на низкой скорости, а потом «утопить» педаль акселератора (газа) в пол…после небольшой паузы автомобиль довольно резким рывком устремится вперед! Упомянутая выше «небольшая пауза» и есть турбо-яма.

Вернуться в оглавление


Твинскролл — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 6 марта 2016; проверки требуют 17 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 6 марта 2016; проверки требуют 17 правок. Турбокомпрессор двигателя Mitsubishi в разрезе.

Твинскролл (двойная улитка, англ. Twin-scroll) — вариант исполнения турбокомпрессора, имеющий два канала для выхлопных газов.

В погоне за повышением коэффициента полезного действия агрегата турбонаддува, производители автомобилей начали экспериментировать с геометрией крыльчатки турбины, формой хаузинга и принципом действия.

Первыми, кто установил на свои двигатели турбокомпрессор, имеющий турбину типа «twin-scroll» были Porsche, выпустив в 1978 году двигатель тип-930 3.3T.[источник не указан 1853 дня] Затем уже за ними потянулись и остальные производители, такие как BMW, Volvo, Peugeot, Subaru[1] и так далее.

Ранеры в коллекторе TwinScroll соединены 1,4 и 2,3 при порядке работе цилиндров 1,3,4,2

Турбина типа «twin-scroll» отличается от обычной наличием двух каналов, разделяющих надвое рабочую камеру турбины. Таким образом, отработавшие газы подаются на турбину раздельно, за счет чего эффективнее используется импульсный наддув.

Отработавшие газы, выходя из цилиндра, попадают в выпускной коллектор, и далее в турбину. Разница с «single-scroll» турбиной в том, что в корпусе турбины присутствуют два радиальных канала, раскручивающих рабочее колесо (крыльчатку) турбины. Наличие двухканального корпуса позволяет наиболее полно использовать принцип импульсного наддува, разделив общий поток отработавших газов на две части. Например, в четырехцилиндровом двигателе с порядком работы цилиндров

1-3-4-2, объединены 1, 4 и 3, 2 цилиндры, то есть, один канал турбины питается 1 и 4 цилиндрами, а второй канал — 3 и 2 цилиндрами.

Плюсы и минусы[править | править код]

К минусам данного типа турбин можно отнести то, что они имеют более сложную конструкцию, что приводит к удорожанию производства. В дополнение к этому, турбина типа «twin-scroll» обладает меньшей эффективностью на высоких оборотах двигателя, в отличие от турбины типа «single-scroll», так как влияние импульсного наддува с повышением частоты вращения уменьшается.

Плюсом данной конструкции турбины является высокая эффективность работы на малых и средних частотах вращения двигателя, что позволяет снизить так называемый эффект «турбо ямы». Таким образом, пиковые значения крутящего момента двигателя возможно получить с 1500~1800 об/мин.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *