Что такое адаптивные фары? Принцип работы и предназначение системы адаптивного освещения
Всем привет. Сегодня на АвтоПульсаре продолжим изучать электронные «автофишки», на этот раз поговорим об адаптивной оптике. Вы узнаете о том, что такое адаптивные фары, для чего они предназначены, а также как это работает.Адаптивные фары существенно отличаются от классической оптики тем, что способны направлять пучок света в сторону поворота автомобиля. Адаптивную оптику можно назвать преемницей автокорректора фар, который известен многим автомобилистам.
Автокорректор появился давно и встречается довольно часто. Главной задачей автокорректора фар — производить вертикальную (вверх или вниз) коррекцию фар относительно проезжей части. Когда авто достаточно загружено, кузов проседает в задней и передней части, при этом фары начинают светить либо «в небо», либо в асфальт. Для того, чтобы обеспечить максимальную эффективность света фар и не слепить проезжающих по встречной полосе автомобилистов и был придуман автокорректор фар. Ну, в общем понятно, думаю? Вернемся к нашим баранам…
Так вот, адаптивные фары способны производить горизонтальную коррекцию пучка света, то есть влево или вправо, в зависимости от того куда поворачивает автомобиль. Адаптивные фары позволяют полностью освещать поворот и как бы заглядывая туда еще до начала поворота. Современные системы адаптивного освещения регулярно подвергаются серьезным испытаниям и доработкам, возможности становятся широкими, а функции более изощренными.
Как это работает?
Адаптивные фары, правильнее было бы называть системой адаптивного освещения, поскольку она включает в себя не только фары, а целый ряд датчиков и электронных прибамбасов. Например, в эту систему входит несколько датчиков (а именно датчики: угла поворота рулевого колеса, частоты вращения колес, продольного ускорения, а также датчик освещения), бортовой компьютер, оптика, электропривод и т. д.
Поворот фары происходит благодаря шаговому электромотору, который поворачивает светящиеся элементы в необходимом направлении. Угол поворота фары может быть очень маленьким и вообще незаметным, причем для каждой фары угол поворота может быть разным. Когда водитель поворачивает направо, правая фара максимально поворачивается под углом 15°, в то время как для левой этот угол ограничен лишь 7°. Независимо от фирмы-производителя, адаптивные фары имеют одно общее название — Adaptive Front lighting System, скор. — AFS. Функция автокорректора фар в адаптивных фарах объединена в одну систему, поэтому фары корректируются не только по горизонтали, но и по вертикали. Как вы понимаете, даже во время движения по неровной холмистой дороге вы не только не сможете ослепить встречную машину, но и заранее будете знать, что там за поворотом — «пропасть или взлет»…
AFS взаимодействует с ESP (система курсовой устойчивости), это необходимо для того, чтобы в случае потери курса или во время заноса, адаптивные фары не пытались скорректироваться, следуя за хаотичным движением руля.
Еще одной полезной «фишкой» адаптивных фар стали датчики света, которые способны реагировать на свет встречных авто, после распознавания которых блок управления подает сигнал электромотору, который опускает фары на несколько градусов, исключая вероятность ослепления встречных машин.
Ведущие компании-разработчики систем адаптивного освещения: Osram, BOSCH, All Automotive Lighting, Hella, Valeo.
Текст принадлежит: АвтоПульсар.
Рисуем светом фар: что такое цифровая адаптивная оптика
Адаптивную оптику Digital Light HD представили еще в 2016 году, а на Женевском автосалоне в 2018-м можно было увидеть уже серийный Mercedes—Maybach с этой опцией. Но подробностей об устройстве новаторского головного освещения до сих пор крайне мало. Почему? Мы решили разобраться с этим вопросом.
Матричная светодиодная оптика понемногу отвоевывает себе место под солнцем. Адаптивное освещение благодаря компании Hella и ее технологии светодиодного матричного источника света в 2013 году сделало рывок вперед: отныне стало возможно регулировать не только ближний/дальний свет, а также силу и угол свечения, но и отдельно обрабатывать несколько десятков зон в секторе освещения каждой фары. Об этой технологии мы уже писали, однако кратко напомним, в чем ее суть.
В фаре расположено несколько десятков светодиодов: в последней версии их 84 штуки, три ряда на плате с системой охлаждения и управления. Оптическая система представляет собой сложную линзу с индивидуальными участками для каждого светодиода. Управление системой осуществляет мощный компьютер, который на основании данных лидаров, камер и навигации определяет наличие на дороге других машин, пешеходов, разметки, поворотов, участков повышенного внимания и позволяет творить настоящие чудеса.
Встречные машины не ослепляются, как и попутные, подсвечиваются знаки, вблизи система не дает их световозвращающему слою слепить водителя, освещаются пешеходы и животные, препятствия, пешеходные переходы и другие важные объекты. В туман и в дождь система старается не слепить водителя, обеспечивая наиболее комфортную форму светового потока. Ну и разумеется, осуществляется подсветка поворотов благодаря форме светового пучка, зависящего от режима движения. Такая система уже позволяет ехать ночью как днем, а водитель не устает даже на сложной неосвещенной трассе.
Технология недолго оставалась эксклюзивной — почивать на лаврах немцам не дали. Компания Magneti Marelli в 2017 году представила серийную систему Partial High Beam 84 (она же — PHB 84), не уступающую топовой матричной системе Hella и даже превосходящую ее по возможностям системы управления. Именно ее применили на новом S-Class после рестайлинга 2017 года и выбрали для нового поколения Porsche 911.
От фары к проектору
Было решено, что можно увеличить количество секторов освещения в самой востребованной зоне до современного ТВ-стандарта, то есть до HD-картинки. По всей зоне освещения это и не требуется, но в ближнем диапазоне можно подсветить особо важные элементы, буквально «нарисовать» на дороге любые подсказки для водителя, а также для водителей соседних автомобилей и пешеходов. А на скоростной трассе — обеспечить усиленное освещение дороги в узкой зоне на максимальное расстояние.
Головной свет на Mercedes-Maybach: мировая премьера фар с функциями освещения в высоком разрешении
Перевод (слева направо):
— DMD-модуль h-Digi разрешением 1,3 мегапикселей
— 84-пиксельный матричный модуль
— источники основного света
К сожалению, светодиодная матричная технология пока не готова к таким испытаниям. Мощность светодиодов основной матрицы и так ограничена. Им помогают крупные «силовые» элементы формирования базового светового потока — городского «широкого», «ближнего» и «дальнего», а сделать больше светодиодов при сохранении нужной степени освещенности пока не получается. Значит, надо менять технологию.
DLP-модуль h-Digi, встраиваемый в головные фары Mercedes-Maybach
Компания Magneti Marelli первой применила DLP-разработку для обеспечения светового потока с высоким разрешением. Не слышали о такой? Раньше она не использовалась в автомобилях, однако вы наверняка сталкивались с ней в обычной жизни. DLP расшифровывается как Digital Light Processing, а появилась эта технологи в далеком 1987 году и получила широкое распространение… в проекторах.
Основа системы DLP — специальная матрица Digital Micromirror Device, микросхема с поверхностью из микрозеркал, которые ведут себя как модуль памяти SRAM в компьютерах. На них можно записать информацию и после считать ее лучом света. Каждое зеркало может отклоняться на угол до 20°, так что отраженный свет можно направить или в объектив, или мимо.
Наложение световых проекций и дополнительная генерация световых функций для полного распределения света через три модуля: h-Digi, матричного света и основных источников
DMD-матрица чрезвычайно компактная: каждое зеркало имеет микронные размеры и работает с очень высокой частотой, до сотен герц, обеспечивая очень высокое разрешение — на данный момент это 1.3Mpx, и есть потенциал для развития. В сочетании с мощными быстродействующими импульсными светодиодами получается экономичное и надежное решение. Матрица не любит сильного нагрева, но светодиоды гораздо холоднее галогенных ламп и позволяют отказаться от механических прерывателей-светофильтров для формирования цветного изображения.
Впрочем, для освещения дороги нужен просто свет, цветное изображение не требуется. Такой проектор с разрешением 1.3Mpx и светодиодным источником освещения из трех диодов и образует модуль h-Digi производства Magneti Marelli. Он отвечает за формирование ближней зоны освещения, а также дальний свет в узкой центральной зоне фары Mercedes-Maybach. А вот за остальную часть светового пятна — модуль PHB 84 и три дополнительных больших светодиода с базовыми зонами освещения. Дополняет все это продвинутая электронная система управления, которая позволяет не только заниматься непосредственно освещением, но и коммуницировать с окружающими.
Результат можно увидеть на видео, которое представлено на сайте компании. Такие эффекты увидишь не в каждом фантастическом фильме: сценаристы просто не предполагали, что такое возможно!
В каждой фаре головного освещения Maybach сочетаются обе технологии Magneti Marelli. DLP-система дополняет матричную оптику, расширяя функционал и позволяя претендовать на лавры самой прогрессивной серийной технологии головного света.
Каков итог?
У итальянской компании давно есть свои интересы на рынке осветительных приборов для автомобилей. Принадлежащая ей с 1998 года торговая марка Carello хорошо известна в Европе. В портфолио компании много передовых вариантов матричных технологий и лазерного дальнего света. Так, она поставляет матричную оптику для Audi, а также матричную оптику с «лазерным» дальним светом для нового BMW i8.
Почему такая таинственность? Есть подозрение, что Magneti Marelli нарушает давнюю монополию Hella на поставку оптики для Mercedes-Benz, а немецкая компания старается лишний раз не подчеркивать этот факт, никак не афишируя нового технологического партнера. Тем более что у Hella вряд ли закончились перспективные идеи.
Что будет дальше?
Специалисты компаний Automotive Lighting и Texas Instruments уже разработали для Mercedes-Benz фары с миллионом (!) световых точек.
Сильноточные светодиоды посылают свет на миллион крошечных зеркал. Каждое из них можно отрегулировать на плюс-минус 10 градусов. Из этих микрозеркал направленный свет попадает на модуль с так называемыми световыми пикселями, отражается через большую линзу и попадает на дорогу. Казалось бы, очень сложно и хрупко, но в Mercedes уверяют, что вибрации от автомобиля или плохой дороги не влияют на зеркала, так как их масса настолько мала, что у них попросту нет собственного момента инерции. Фактически из фары выходит миллион отдельно управляемых лучей.
Что такое адаптивные фары и как их сделать
Часто бывают ситуации, когда приходится ездить по извилистой трассе в ночное время. Приближаясь к повороту, каждый водитель снижает скорость, ведь никогда неизвестно, что за ним. Увы, заставить свет изогнуться невозможно, но его можно направить, в чём помогут адаптивные фары.
Статистика в подтверждение
Автомобильное освещение способно не только обеспечить комфортную поездку в ночное время, но и может спасти жизнь. Преждевременно заметив преграду или живое существо, водитель может вовремя остановиться. Но это не всегда помогает, ведь стандартные фары несовершенные и порядком устарели. Так, половина всех ДТП случается именно ночью, даже если есть ночное освещение. Это стало причиной, чтобы разработать адаптивный свет фар.
Поскольку обычное освещение машины направлено вперёд на дорогу, при поворотах оно неспособно осветить дальнейший участок. Это не касается адаптивных фар, которые изменяют свой угол освещения в соответствии с поворотом руля. К тому же это исключает появление слепящего эффекта для других водителей, что также является частой причиной аварий.
Принцип работы
Такие современные фары оборудуются специальными сенсорами, которые следят за поворотом руля и скоростью движения автомобиля. При изменении этого показателя подаётся электронный сигнал в специальные датчики, которые и поворачивают элементы освещения. Стандартный угол рассеивания для каждого фонаря составляет 15 градусов, что для двух фар будет 30 градусов.
В основном система адаптивного освещения использует для своей работы регуляторы для приёма сигналов. В них встроен датчик выравнивания, который поднимает свет фар, когда автомобиль выезжает на возвышение. Встречаются системы AFS, которые сегодня наиболее распространены, и AFL — более сложные и функциональные модели.
Среди будущих планов разработчиков числится использование специальных датчиков приближения, которые не только осветят объект впереди, но и проинформируют водителя, какую силу нужно приложить для тормоза.
Такие решения в освещении ещё не являются полностью самостоятельным решением. Они лишь начинают внедряться. Благодаря своим преимуществам эти фары уже берут участие в большинстве тестов безопасности водителя, поэтому вскоре будут активно использоваться во всех новых моделях автопрома.
Особенности системы
Работают адаптивные светодиодные фары под управлением бортового компьютера. Он собирает в себя информацию с датчиков и создаёт сигналы в моторике ламп освещения. Сюда даже включаются функции стеклоочистителей, которые опускают фонари при начале работы. Важной особенностью таких устройств является возможность поворота как горизонтально, так и вертикально.
Система адаптивных фар следит за безопасностью движения, поэтому устройства освещения опускаются вниз, когда впереди едет встречный автомобиль. Для этого датчики улавливают мощность встречного света. Аналогично фары реагируют на туман, рассеиваясь на расстоянии метра.
Для блок-фар используются специальные биксеноновые адаптивные фары. Они обладают малым мотором с небольшой дискретностью, который двигает источники света во все стороны. В зависимости от поворота фонари изменяют свою мощность и направление. Так, если двигаться влево, левая фара повернётся на полный угол, а правая — лишь наполовину. Это делается для достижения большей безопасности.
Решение своими силами
К сожалению, сегодня только небольшое количество машин оборудовано технологией адаптивного освещения. Чтобы оборудовать свой автомобиль адаптивными источниками света, не понадобится много усилий. Конечно, оригинального результата добиться не удастся, ведь он создаётся только при помощи современных технологий и бортового компьютера. Если в машине находятся стандартные источники питания, им можно добавить возможности поворотного механизма, а также отрегулировать уровень наклона.
В первую очередь важно подумать о проводке. Элементы датчиков должны подходить к фарам. Если где-то возникает ошибка, модель изделия необходимо заменить. На практике понадобится два датчика, которые будут установлены на передние колёса. Чтобы можно было управлять адаптивом, используется специальный модуль LCM.
Берёмся за установку
Чтобы установить такой свет своими руками, потребуется открыть передний капот. Для этого его следует снять, но, не задевая кабеля противотуманных фар и подачи жидкости в омыватель. После этого отсоединяются сами фары. Как правило, они крепятся на 3 болта. После этого необходимо провести проводку от нового комплекта фонарей в салон. Среди переходников будут провода на массу, которые необходимо поставить в лонжеронах под фары.
Для удобства все провода, проведённые в салон, лучше обмотать изолентой. Также кабеля от левой фары лучшего всего установить под аккумулятором, а от правой — за омывателем. После этого собираются фары, подсоединяется к ним блок для розжига и адаптивного света. После того как будут подсоединены разъёмы, можно подключать аккумулятор в работу. Дальше нужно получить доступ к блоку предохранителей. В чёрный разъём ставится провод лампы, что даст подачу энергию приборам освещения и запустит их работу.
Поскольку к элементам движения автомобиля подключены датчики, они смогут передавать сигнал на адаптивные фары. Такая система работает не на всех машинах, но аналогичного эффекта можно добиться своими силами. Также большинство современных функций не удастся внедрить в транспортное средство самостоятельно, поскольку они требуют работы бортового компьютера.
Сегодня адаптивные ксеноновые фары AFLS стали новым трендом. Водителей привлекает их функционал и удобство, ведь они способны сделать поездку во многом комфортней. Чтобы обзавестись этими устройствами, можно приобрести фары в специализированных магазинах и заняться их установкой собственными силами. Это даст максимально приближенный к оригиналу функционал освещения.
Чтобы позволить себе современные адаптивные фары, способные изменять угол освещения, лучше обратиться в специализированную компанию, которая подберёт такие устройства под модель машины. Сделать это самому реально, но важно учитывать совместимость всех элементов и обладать достаточными навыками.
Адаптивные фары
Представьте, вы едете домой поздно ночью по извилистой двухполосной неосвещенной дороге. Вы приближаетесь к участку поворота на скорости 65 км/ ч — достаточно медленно, чтобы выполнить поворот, но достаточно быстро, чтобы резко затормозить в случае необходимости.
Адаптивные фарыЧто ждет впереди — автомобиль? животное? С адаптивными фарами вам не нужно больше гадать — они освещают каждый участок дороги и дают более четкое представление о том, что ждет вас впереди.
Но все же нужно быть бдительными и иметь ввиду, что это не панацея — так, например, в США в 2006 году более 46 процентов ДТП со смертельным исходом произошли именно ночью. В этой статье мы рассмотрим чем адаптивные фары отличаются от стандартных и выясним каким образом они могут сделать ночное вождение более безопасным. Также мы узнаем, какие нововведения нас ожидают.
Стандартная фара освещает только тот участок дороги, который находится строго по курсу движения, и при объезде ухабов они больше освещают обочину, нежели саму дорогу.
Адаптивные фары реагирует на поворот руля и скорость, и автоматически настраиваются под дорожные условия. При повороте на право/лево — пучок света следует за направлением руля. Это важно не только для водителя автомобиля с адаптивными фарами, но и для других водителей — у ослепленных ярким светом водителей могут возникнуть проблемы с видимостью. Поскольку свет адаптивных фар направлен на саму дорогу, риск появления слепящего света снижается.
Автомобиль с адаптивными фарами оснащен электронными сенсорами, которые определяют скорость движения и угол поворота руля. Датчики активируют небольшие блоки питания, встроенные в корпус лампы, и задают им направление освещения. Типичный адаптивный фонарь способен рассеивать свет под углом 15 градусов, таким образом, общий диапазон освещения составляет 30 градусов.
Если этого диапазона будет недостаточно, например, при выполнении поворота на низкой скорости на стоянке или крутых поворотах, можно включить фары. Некоторые модели BMW оснащены виражными фарами (модуль фары поворачивается при движении на повороте, повторяя траекторию автомобиля, чтобы обеспечивался улучшенный обзор для водителя).
Если автомобиль движется со скоростью менее 40 км/час и идет на поворот, угол освещения дороги виражными фарами достигает 80 градусов, а если автомобиль ускоряется или выходит из поворота, фары автоматически выключаются. Если автомобиль не движется или сдает назад, адаптивные фары гореть не будут, что предотвращает “ослепление” других водителей.
Далее мы расскажем о других преимуществах адаптивных фар, а также какие передовые технологии будут применяться при их разработке.
Саморегулирующиеся фары и технологии будущего
Большинство систем адаптивного освещения включают в себя саморегулирующиеся фары. Такие фары имеют дополнительный датчик выравнивания. Так, например, когда автомобиль наскакивает на кочку, фары несколько приподнимаются. В таких случаях свет от стандартных фар устремляется вверх, и находится в таком положении до тех пор, пока автомобиль не проедет преграду. Возможно, вы уже замечали, что когда автомобиль сзади вас переезжает, скажем, железнодорожные пути, его фары вспыхивают, как бы подмигивая. На самом деле свет фар направлен вверх и бьет по вашим глазам, вместо того, чтобы освещать дорогу.
С саморегулирующимися фарами датчик выравнивания посылает информацию электрическому серводвигателю о том, что необходимо направить свет фар вниз, на дорогу, вне зависимости от положения автомобиля. В Европе уже устанавливают саморегулирующиеся фары на новые автомобили, а также на все американские, оснащенные би-ксеноновыми фарами. Би-ксеноновые фары настолько яркие, что если не являются саморегулирующимися, то слепят других водителей.
Адаптивные фары еще не являются стандартным оборудованием большинства автомобилей. На самом деле, лишь немногие компании предлагают их даже в качестве опции. Так, например, BMW опционально предлагает адаптивные фары для всех своих моделей, а для 335, 535, 7-Series и М-Series они являются стандартными. Renault предлагает их в качестве опции для некоторых моделей, а Volkswagen включил эти фонари в дополнительный пакет Luxury для Passat 2006. Lexus, Audi и многие люксовые производители также включают адаптивные фары в пакет опций.
Фары будущего
Дизайнеры готовят нам несколько инновационных технологий, которые должны появиться в серийных моделях в течение ближайших нескольких лет. Так, например, адаптивные тормозные фонари не только укажут на то, что впереди идущий автомобиль собирается затормозить, но также проинформируют с каким усилием водитель нажал на педаль тормоза, что в свою очередь подскажет на сколько необходимо сбавить скорость сзади идущему автомобилю. В условиях экстренного торможения такие фонари будут светить ярче. Таким образом, если водитель впереди идущего автомобиля резко ударил по тормозам, загорается яркий стоп-сигнал, если же педаль нажата с меньшим усилием — свет не такой яркий.
Оптоволоконная система освещения с одним источником света (использует только одну лампу, поток света от которой распределяется оптоволоконными кабелями) может полностью изменить систему автоматического освещения с помощью большего количества разнообразных средств и параметров освещения.
Вместо двух фар, автомобиль может получить светоизлучающую систему, расположенную на передней панели. Также в оптоволоконной системе могут быть использованы небольшие электромоторы, которые обеспечат более многофункциональную систему адаптивного освещения. На данный момент существует только один недостаток – оптоволоконные фары не могут обеспечить ярким светом, поэтому система с одним источником яркого света просто необходима.
Источник: Авто Релиз.ру.Адаптивные фары – возможности и принцип действия устройств
Адаптивная фара в сборе
Инновационная система адаптивного света далеко выходит за привычные водителям режимы переключения света на ближний и дальний.
Адаптивные фары регулируют режим освещения дороги с учетом конкретных условий движения. Первые устройства могли только поворачивать источники освещения в зависимости от поворота руля, со временем возможности значительно расширялись.
С появлением надежных и компактных видеокамер и мощных компьютерных систем автомобиля параметры регулирования светового луча значительно возросли.
Это позволило не только повысить безопасность дорожного движения во всех погодных условиях и на всех режимах, но и существенно снизить утомляемость водителя при езде в ночное время суток.
Как работает адаптивная фара
Адаптивный свет фар позволяет постоянно ездить с включенным дальним светом и при этом не беспокоиться, что встречные водители будут ослепляться.
Ведущими компаниями-разработчиками устройств считаются Hella, Valeo и All Automotive Lighting, но на рынке можно встретить и менее известных производителей. Подробнее об обзорах авто, в том числе, с адаптивными фарами, можно прочитать в соответствующем разделе сайта.
Электронная система адаптивного регулирования светом фар включает в себя исполнительные электрические механизмы, электронный блок управления и датчики контроля и оповещения.
Как регулируется адаптивный свет фар
С учетом конкретного назначения каждый блок отвечает за свои функции. Входные устройства передают на электронный блок следующую информацию:
Микродвигатели привода
- Датчики частоты вращения колес автомобиля передают данные о скорости движения.
- Датчики угла положения руля сообщают о направлении движения.
- Датчик существующего на автомобильной дроге силы света передает уровень освещения.
- Датчик линейного ускорения распознает профиль дороги и условия движения автомобиля.
- Видеокамера фиксирует наличие пешеходов, других транспортных средств в попутном и встречном направлении, животных и т. д.
Все сигналы от установленных датчиков и видеокамер поступают к электронному блоку управления компьютера автомобиля.
Установленное специальное программное обеспечение выполняет быстрый анализ обстановки и передает сигнал на электрические микродвигатели, адаптивные фары изменяют направление и силу освещения с учетом этих данных.
Направление света
Модули фар поворачивают их в двух плоскостях: вертикальной и горизонтальной.
Если обнаруживаются встречные автомобильные средства, то между линзой и лампочкой опускается защитный регулирующий экран. Он изменяет адаптивный свет фар с учетом необходимой силы, направленности и светотеневой границы луча.
Некоторые модели имеют дополнительные галогеновые лампы для освещения обочины и поворотов, включение/выключение освещения осуществляется компьютером.
Режимы освещения адаптивными фарами
В зависимости от производителя и конкретной марки устройства обеспечивается несколько режимов освещения:
- Для езды в городских условиях и по проселочным дорогам. Свет имеет небольшую дальность, светограница горизонтальная, возможна установка дополнительных лампочек для освещения обочин и тротуаров.
- Для езды по автомагистралям включается ближний свет с увеличенной дальностью – повышается безопасность передвижения на высоких скоростях.
- Дальний свет работает по привычной схеме, но переключение выполняется в автоматическом режиме.
- Освещение поворотов регулируется в зависимости от пространственного положения рулевого колеса. Фары поворачиваются только в горизонтальной плоскости.
Электронный блок управления
Угол максимального вертикального и горизонтального поворота фар учитывает модель автомобиля и условия его эксплуатации.
При желании водителя фары можно перевести в обычный режим пользования.
О других автоаксессурах читайте здесь.
Похожие статьи
Что такое адаптивные фары и зачем они нужны
Понравилась статья? Следите за новыми идеями полезных авто советов в нашем канале. Подписывайтесь на нас в Яндекс.Дзене. Подписаться.
Адаптивные фразы – это устройства для обустройства транспортных средств, которые в последнее время стали пользоваться большой популярностью. Отличия с классической оптикой стали основой для развития спроса, а также производители постарались проработать основные технические и практичные особенности. Но почему адаптивные фары стали пользоваться спросом?
В первую очередь стоит отметить направленность света в ту же сторону, что и колеса автомобиля, благодаря чему обеспечивается полноценный обзор при езде, в особенности при входе в поворот. Это фары из категории «умных», благодаря чему водители могут рассчитывать на больше технических удобств при езде.
Принцип функционирования адаптивных фар
Адаптивные фары или же система адаптивного освещения – это комплекс устройств, которые включают в себя бортовой компьютер и несколько датчиков, связанных между собой. Комплекс устройств может контролировать скорость движения, поворот руля, а также любые другие изменения при езде транспортного средства для регулирования уровня освещения. В основе самих фар лежит электромотор, поэтому обеспечивается правильное движение осветительного устройства в нужном направлении.
Важно то, что электромоторы, которые присутствуют в системе освещения для автомобиля – это детали сверхточного принципа работы, поэтому исключаются любые нарушения. Плавность и точность в работе адаптивной системы освещения транспортного средства – это возможность получить практичность и удобство в работе. За счет того, что вся система компьютеризирована, можно рассчитывать на точное и правильное функционирование в соответствии с требованиями.
Важные характеристики работы адаптивного освещения
Вне зависимости от того, какая именно компания разработала технологию, фары для обустройства адаптивной системы отопления могут обладать следующими функциональными особенностями:
- Городское освещение, когда скорость автомобиля не превышает пределов в 55 км/час.
- Освещение для проселочной дороги, когда скорость движения транспортного средства может достигать 100 км/час.
- Освещение для езды по автомагистрали подойдет для тех, кто люби ездить больше 100 км/час. Но вот при езде на такой скорости нужно внимательно соблюдать правила безопасности во избежание аварийной ситуации.
Правильное и внимательное отношение к выбору и использованию адаптивной системы освещения транспортного средства – это гарантия безопасности и надежности в соответствии с требованиями. Самое главное не пренебрегать и правилами обслуживания, поскольку так можно продлить срок работы без сложностей и неудобств.
Адаптивный головной свет: история, настоящее, будущее
Как сделать, чтобы фары автомобиля, во-первых, всегда светили туда, куда он едет, и во-вторых, при этом не слепили других водителей? На этот вопрос инженеры пытаются ответить уже почти сотню лет. Простота идеи компенсируется сложностью ее реализации.
Адаптивный свет
Чтобы фары светили куда надо
Сначала разберемся с первой частью проблемы. Самым ранним техническим решением, призванным направить свет фар в повороты, а не на обочины, стали поворотные фары, имеющие механическую связь с рулевым управлением, — логичное, в общем, решение. Одним из первых таких автомобилей был американский Willys-Knight 70A Touring 1928 года с третьей дополнительной фарой перед решеткой радиатора, закрепленной на травéрсе, соединенной с рулевым механизмом.
Другое, более оригинальное решение было применено в 1935 году на мелкосерийной чехословацкой Tatra 77А: рефлектор третьей, центральной фары мог поворачиваться при помощи хитроумной электромагнитной системы.
Вообще, Tatra 77A уникальный автомобиль, заслуживающий отдельного обзора: обтекаемый кузов (Cx=0,212), заднемоторная компоновка, атмосферный 3,4-литровый V8 из магниевого сплава с верхним расположением клапанов, киль-плавник на крыше сзади.
Параллельно с работой над экзотическими поворотными фарами инженеры автомобильных компаний по всему миру решали и более простую задачу: сделать так, чтобы фары светили в одинаковом направлении независимо от загрузки автомобиля. Так, на Citroёn 2CV в 1948 году появился ручной корректор фар, на Panhard Dyna Z в 1954 году — автоматический. Начиная с семидесятых годов корректоры фар стали обязательными для автомобилей в Германии и ряде других стран Западной Европы. А вот усложняющие конструкцию автомобиля поворотные фары так и остались экзотикой на несколько десятков лет.
В 1967-м более сложная система поворотных фар была представлена французами на обновленной версии Citroёn DS. Благодаря механической связи с подвеской автомобиля фары не только поворачивались вправо или влево, но и меняли свой наклон относительно горизонтальной оси в зависимости от положения колес относительно кузова.
Хитрые поворотные фары Citroёn затем устанавливал как на следующие версии DS (например, на DS21 1972 года — на фото), так и на другие свои модели, скажем, на футуристическое купе SM.
Впрочем, с развитием электроники идея поворотных фар вышла на новый виток развития. Одним из пионеров стала Hella, выпустившая в 2003 году систему Dynamic Bend lighting. Основываясь на показаниях датчика поворота рулевого колеса, система поворачивала прожекторы фар при помощи электромоторов.
Технически реализовано это было следующим образом: линзованный прожектор фары был установлен на раму, поворачивающуюся относительно вертикальной оси в диапазоне +/‒15 градусов — этого достаточно для эффективной работы в поворотах радиусом до 200 метров. Например, при входе в поворот радиусом 190 метров зона, освещенная стандартными фарами ближнего света, составляет около 30 метров. Новая технология увеличила этот показатель до 55 метров.
Вот так выглядит схема фары Dynamic Bend lighting на Opel Signum 2003 года. Цифрой 1 здесь обозначен поворотный би-ксеноновый модуль, 2 — виражная фара, 3 — модуль светоотдачи, 4 — управляющий модуль, 5 — блок розжига.
А вот так — собственно поворотный модуль.
Таким образом, водитель получил возможность лучше видеть траекторию движения и больше времени для объезда препятствия или торможения в случае необходимости. Но и это еще не всё: система от Hella учитывала и скорость движения — скорость поворота фар на высокой скорости была выше, а на низкой они двигались медленнее.
А что же с ситуацией, когда водитель включил поворотник или стоит на светофоре с повернутыми колесами? В Hella подумали и об этом — в таком режиме система светила и за поворот, и прямо!
Помимо Opel Signum, такие фары устанавливались на A8 (в модификации D3).
Чтобы не слепили встречку (но при этом все равно могли заглядывать за поворот)
Смысл систем изменения положения фар заключается в том, чтобы обеспечить водителю лучшую видимость. Вместе с тем развитие технологий, а именно появление линзованных прожекторов и более мощных источников света, в том числе HID, или газоразрядных ламп (так называемый «ксенон»), увеличили риск ослепления встречных водителей мощным лучом света. Научно доказано, что после однократного ослепления дальним светом зрение водителя восстанавливается полностью лишь через 48 часов. Очевидно, что подобное негативно влияет на безопасность движения. Причем вопрос этот настолько актуален, что, к примеру, в Великобритании даже появилась инициативная группа Glaremare, продвигающая идею законодательного ограничения яркости фар.
Классическим решением этой проблемы всегда считалось переключение с яркого дальнего света на менее эффективный, но не слепящий ближний. В том числе переключение автоматическое: первые фоторезисторные системы были представлены в 1952-м компанией General Motors на новых моделях Cadillac, Buick и Oldsmobile (система называлась Autronic Eye). К началу двухтысячных наибольшее распространение получили системы, основанные на камерах со светочувствительными КМОП-матрицами.
Видите странный предмет, напоминающий фонарь, на торпедо между рулем и лобовым стеклом этого великолепного Cadillac Coupe deVille 1955 года? Это датчик освещенности Autronic Eye. К нему прилагался еще блок усилителя размером с крупный автомобильный аккумулятор, располагавшийся в районе заднего сиденья, и несколько других компонентов.
Вместе с тем в плохих погодных условиях от водителя все равно требовалось включать дополнительные противотуманные фары. То есть такие автоматические системы нельзя было назвать технически изящным решением проблемы безопасного движения в условиях недостаточной видимости.
Таким решением стала разработанная инженерами Hella в 2006 году система AFS (Advanced Front Lighting System). В ее основу легла технология проекционного типа, получившая фирменное обозначение Vario. Впервые он был реализован в версии VarioX, где «X» обозначает ксеноновый источник света; позднее появился VarioLED — со светодиодным источником.
Модуль VarioX выглядит вот так. Цифрой 1 обозначен цилиндр, изменяющий световой пучок. А вот тут драйвовчанин Berryman разбирает модуль с пристрастием.
Принцип работы следующий: между источником света (изначально — HID-лампой) и линзой располагается цилиндр, вращающийся вокруг продольной оси при помощи шагового электродвигателя. Внешняя поверхность цилиндра имеет переменную форму, что позволяет видоизменять световой пучок.
На скорости до 55 км/ч, пучок имеет четко выраженную и недалеко расположенную горизонтальную границу, чтобы не слепить других водителей. Расширенная форма пучка перед автомобилем позволяет лучше замечать пешеходов и велосипедистов.
Загородный свет включается в диапазоне 55–100 км/ч — это аналог традиционного ближнего света с тем отличием, что проекционный модуль генерирует асимметричный световой пучок, чтобы не слепить встречный поток. Граница светового пучка поднимается чуть выше, чем в городе, — для лучшей видимости. При разгоне выше 100 км/ч — в скоростном режиме — модуль обеспечивает необходимый световой пучок для прямолинейной езды и поворотов на высокой скорости.
Первые фары с AFS были штатно установлены на Mercedes E-Класс 2006-го и Opel Insignia 2008-го модельного года (на фото).
Дальний свет принципиально не отличается от такового на традиционных фарах с HID-лампой и линзовым пакетом, но не требует от водителя никаких действий для переключения в скоростной или загородный режим для предотвращения ослепления встречных автомобилей. На помощь тут приходит штатный датчик освещенности, размещенный на обратной стороне салонного зеркала заднего вида.
В плохих погодных условиях, ориентируясь на показания штатного датчика дождя и работу дворников, если те включены более двух минут подряд, система адаптирует световой пучок таким образом, чтобы рассеивание луча в каплях воды или снеге не слепило водителя. То есть затемняет участок непосредственно перед автомобилем.
Само собой, проекционный модуль, так же как и в системах Dynamic Bend, размещается в поворотной раме, что позволяет сочетать изменение формы светового пучка с поворотом фар на угол до 15 градусов в каждую сторону.
Несмотря на кажущуюся безупречность системы AFS, инженеры Hella изначально учитывали ее ограничения. Так, датчик дождя нельзя считать полноценным определителем погоды, потому что он не может отличить дождь от, например, брызг из-под колес другого автомобиля. Было очевидно, что только оптический сенсор может помочь определить снижение контрастности, характерное для условий недостаточной видимости.
В 2009 году изящество и функциональность системы AFS были дополнены оптической цифровой камерой с блоком обработки изображения. Принцип работы следующий: размещенная на лобовом стекле камера распознает встречные и попутные автомобили на дистанции до 850 метров. На основе этой информации динамически корректируется световой пучок. Помимо детекции других автомобилей, камера определяет и профиль дороги, помогая изменять вертикальное положение светового пучка на подъемах и спусках.
Впервые система AFS с камерой была установлена на Mercedes-Benz E-класса 2009 года (W212).
Использование управляющего проекционным модулем высокопроизводительного процессора, распознающего другие транспортные средства, позволяет оптимизировать работу дальнего света и предотвратить ослепление встречных водителей. Каким образом?
Световой пучок просто генерируется так, что в нем не засвечивается сектор (максимум — на 1 люкс), в котором находится встречный автомобиль. Образуется своего рода световой туннель, причем его формирование происходит динамически с учетом передвижений встречного/попутного автомобиля.
Добро пожаловать в эпоху светодиодов
В 2010 году система AFS была усовершенствована — вместо газоразрядных ламп были впервые применены светодиоды. Данная система была установлена на Audi A8. А в 2013-м электронно-механическая система AFS уступила место полностью электронной системе без подвижных элементов с аналогичным функционалом. Это стало возможным благодаря применению пяти рефлекторов и 25 светодиодов (по пять на чип/рефлектор). Каждый из светодиодов контролировался индивидуально и предназначался для освещения определенного сегмента дороги, причем их можно было не только включать и выключать, но и затемнять.
Вот она, первая серийная реализация LED Matrix для Audi A8 2013 года.
Просто отключая те или иные чипы или меняя уровень яркости (от 0 до 100 %), эта система позволяла распознавать одновременно до восьми объектов на дороге и динамически менять форму и интенсивность светового пучка. Таким образом, разработанная инженерами Hella система стала еще более функциональной.
Следующим ключевым этапом в развитии систем адаптивного головного света стала так называемая матричная система HD84, созданная в Hella совместно с Daimler AG и впервые представленная на Mercedes-Benz E-Класса W213 в 2016 году. Роль источника света в этой системе отведена специальному трехстрочному блоку из 84 светодиодов (на каждую фару).
Примечательно, что при разработке этих фар впервые была применена силиконовая линза — она способна выдерживать высочайший уровень яркости и позволяет достигать большей точности при производстве, чем традиционная оптика.
Ключевые принципы работы этой системы остались теми же: динамическая адаптация светового пучка в соответствии с трафиком, погодой и дорожными условиями. На свободной дороге вы все так же получаете максимум видимости и освещенности. Сегменты светового пучка, в которых обнаруживаются встречные или попутные автомобили, автоматически отключаются за доли секунды. Система способна отслеживать движение нескольких автомобилей одновременно.
Новая система контроля погодных условий снижает уровень отражений во время дождя, уменьшая яркость конкретных светодиодов. И еще один важный факт: матричная система HD84 стала первой полностью электронной динамической системой поворотного света в мире.
Настоящее и будущее: матричные фары с лазерным дальним светом и жидкокристаллические фары
В 2018 году компания Hella представила еще одну разработку, снова воплощенную на новом флагманском седане Audi A8 (да, и снова Audi A8!). Помимо того что в каждой фаре размещается двухстрочный источник света на 32 светодиода, фары дополнены и лазерными источниками света, которые включаются после достижения 70 км/ч, позволяя водителю различать объекты на дистанции до 600 метров — вдвое дальше по сравнению со светодиодным дальним светом.
Эта технология лазерных источников света носит название LARP – Laser Activated Remote Phosphor, то есть активирующийся лазером люминофор. Иногда эту технологию также называют «фазерной» (от фосфор+лазер). Уровень яркости таких источников света гораздо выше, чем у светодиодов. Владельцы новой Audi A8 (на фото) могут убедиться.
При этом Hella не останавливается на достигнутом. В настоящий момент в компании разработаны жидкокристаллические фары — это настоящий прорыв в области автомобильных систем головного света. Источником света тут является модуль из 25 высокомощных светодиодов, расположенных в три ряда. Между ним и проекционной линзой находится жидкокристаллический дисплей с разрешением в 100×300 пикселей с возможностью изменения цвета и яркости каждого отдельного пикселя.
Если вы с нами с самого начала этого блога, то наверняка уже видели ролик — мы публиковали его в нашем посте об истории автомобильного света.
Полученная при помощи видеокамеры и оптических датчиков скорости и расстояния (лидаров) информация обрабатывается микропроцессором, после чего попадает в блок управления, генерирующий до 60 команд регулировки пикселей в секунду по каждому отдельному пикселю. Фактически в этих фарах все зависит от программного обеспечения. Инженерам это дает практически неограниченную свободу действий. Например, помимо моментальной адаптации системы головного света к дорожным условиям, прямо на дорожное покрытие можно будет проецировать траекторию наилучшего вхождения в поворот в виде стрелок-указателей. А в новом Volkswagen Touareg, представленном этой весной, наша система IQ.Light — LED matrix headlamps (уже 128 светодиодов) научилась спасать от ослепления не только встречные и впереди идущие машины, но и собственного водителя: перед попаданием света фар на дорожные знаки видеокамера автомобиля посылает в систему освещения сигнал о временном снижении яркости светодиодов. Больше того, высокоточная система позволяет нивелировать даже свет, отражаемый от мокрой поверхности дороги.
Безопасное настоящее и еще более безопасное будущее — вот то, над чем в компании Hella работают не покладая рук уже 119 лет.
Будем рады ответить на все вопросы о системах адаптивного головного света — и ждем ваших комментариев!
К списку новостей